Vid2Robot: End-to-end Video-conditioned Policy Learning with Cross-Attention Transformers
- URL: http://arxiv.org/abs/2403.12943v2
- Date: Tue, 27 Aug 2024 23:15:11 GMT
- Title: Vid2Robot: End-to-end Video-conditioned Policy Learning with Cross-Attention Transformers
- Authors: Vidhi Jain, Maria Attarian, Nikhil J Joshi, Ayzaan Wahid, Danny Driess, Quan Vuong, Pannag R Sanketi, Pierre Sermanet, Stefan Welker, Christine Chan, Igor Gilitschenski, Yonatan Bisk, Debidatta Dwibedi,
- Abstract summary: We introduce Vid2Robot, an end-to-end video-conditioned policy that takes human videos demonstrating manipulation tasks as input and produces robot actions.
Our model is trained with a large dataset of prompt video-robot trajectory pairs to learn unified representations of human and robot actions from videos.
We evaluate Vid2Robot on real-world robots and observe over 20% improvement over BC-Z when using human prompt videos.
- Score: 36.497624484863785
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large-scale multi-task robotic manipulation systems often rely on text to specify the task. In this work, we explore whether a robot can learn by observing humans. To do so, the robot must understand a person's intent and perform the inferred task despite differences in the embodiments and environments. We introduce Vid2Robot, an end-to-end video-conditioned policy that takes human videos demonstrating manipulation tasks as input and produces robot actions. Our model is trained with a large dataset of prompt video-robot trajectory pairs to learn unified representations of human and robot actions from videos. Vid2Robot uses cross-attention transformer layers between video features and the current robot state to produce the actions and perform the same task as shown in the video. We use auxiliary contrastive losses to align the prompt and robot video representations for better policies. We evaluate Vid2Robot on real-world robots and observe over 20% improvement over BC-Z when using human prompt videos. Further, we also show cross-object motion transfer ability that enables video-conditioned policies to transfer a motion observed on one object in the prompt video to another object in the robot's own environment. Videos available at https://vid2robot.github.io
Related papers
- Gen2Act: Human Video Generation in Novel Scenarios enables Generalizable Robot Manipulation [74.70013315714336]
Gen2Act casts language-conditioned manipulation as zero-shot human video generation followed by execution with a single policy conditioned on the generated video.
Our results on diverse real-world scenarios show how Gen2Act enables manipulating unseen object types and performing novel motions for tasks not present in the robot data.
arXiv Detail & Related papers (2024-09-24T17:57:33Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
We seek to learn a generalizable goal-conditioned policy that enables zero-shot robot manipulation.
Our framework,Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal.
We show that this approach of combining scalably learned track prediction with a residual policy enables diverse generalizable robot manipulation.
arXiv Detail & Related papers (2024-05-02T17:56:55Z) - Learning an Actionable Discrete Diffusion Policy via Large-Scale Actionless Video Pre-Training [69.54948297520612]
Learning a generalist embodied agent poses challenges, primarily stemming from the scarcity of action-labeled robotic datasets.
We introduce a novel framework to tackle these challenges, which leverages a unified discrete diffusion to combine generative pre-training on human videos and policy fine-tuning on a small number of action-labeled robot videos.
Our method generates high-fidelity future videos for planning and enhances the fine-tuned policies compared to previous state-of-the-art approaches.
arXiv Detail & Related papers (2024-02-22T09:48:47Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation.
Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation.
In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies.
arXiv Detail & Related papers (2023-07-12T07:04:53Z) - Learning Video-Conditioned Policies for Unseen Manipulation Tasks [83.2240629060453]
Video-conditioned Policy learning maps human demonstrations of previously unseen tasks to robot manipulation skills.
We learn our policy to generate appropriate actions given current scene observations and a video of the target task.
We validate our approach on a set of challenging multi-task robot manipulation environments and outperform state of the art.
arXiv Detail & Related papers (2023-05-10T16:25:42Z) - Affordances from Human Videos as a Versatile Representation for Robotics [31.248842798600606]
We train a visual affordance model that estimates where and how in the scene a human is likely to interact.
The structure of these behavioral affordances directly enables the robot to perform many complex tasks.
We show the efficacy of our approach, which we call VRB, across 4 real world environments, over 10 different tasks, and 2 robotic platforms operating in the wild.
arXiv Detail & Related papers (2023-04-17T17:59:34Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
We develop a framework for extracting agent-agnostic action representations from human videos.
Our framework is based on predicting plausible human hand trajectories.
We deploy the trained model zero-shot for physical robot manipulation tasks.
arXiv Detail & Related papers (2023-02-03T21:39:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.