FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation
- URL: http://arxiv.org/abs/2403.12962v1
- Date: Tue, 19 Mar 2024 17:59:18 GMT
- Title: FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation
- Authors: Shuai Yang, Yifan Zhou, Ziwei Liu, Chen Change Loy,
- Abstract summary: We introduce FRESCO, intra-frame correspondence alongside inter-frame correspondence to establish a more robust spatial-temporal constraint.
This enhancement ensures a more consistent transformation of semantically similar content across frames.
Our approach involves an explicit update of features to achieve high spatial-temporal consistency with the input video.
- Score: 85.29772293776395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The remarkable efficacy of text-to-image diffusion models has motivated extensive exploration of their potential application in video domains. Zero-shot methods seek to extend image diffusion models to videos without necessitating model training. Recent methods mainly focus on incorporating inter-frame correspondence into attention mechanisms. However, the soft constraint imposed on determining where to attend to valid features can sometimes be insufficient, resulting in temporal inconsistency. In this paper, we introduce FRESCO, intra-frame correspondence alongside inter-frame correspondence to establish a more robust spatial-temporal constraint. This enhancement ensures a more consistent transformation of semantically similar content across frames. Beyond mere attention guidance, our approach involves an explicit update of features to achieve high spatial-temporal consistency with the input video, significantly improving the visual coherence of the resulting translated videos. Extensive experiments demonstrate the effectiveness of our proposed framework in producing high-quality, coherent videos, marking a notable improvement over existing zero-shot methods.
Related papers
- Live2Diff: Live Stream Translation via Uni-directional Attention in Video Diffusion Models [64.2445487645478]
Large Language Models have shown remarkable efficacy in generating streaming data such as text and audio.
We present Live2Diff, the first attempt at designing a video diffusion model with uni-directional temporal attention, specifically targeting live streaming video translation.
arXiv Detail & Related papers (2024-07-11T17:34:51Z) - Training-Free Semantic Video Composition via Pre-trained Diffusion Model [96.0168609879295]
Current approaches, predominantly trained on videos with adjusted foreground color and lighting, struggle to address deep semantic disparities beyond superficial adjustments.
We propose a training-free pipeline employing a pre-trained diffusion model imbued with semantic prior knowledge.
Experimental results reveal that our pipeline successfully ensures the visual harmony and inter-frame coherence of the outputs.
arXiv Detail & Related papers (2024-01-17T13:07:22Z) - Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World
Video Super-Resolution [65.91317390645163]
Upscale-A-Video is a text-guided latent diffusion framework for video upscaling.
It ensures temporal coherence through two key mechanisms: locally, it integrates temporal layers into U-Net and VAE-Decoder, maintaining consistency within short sequences.
It also offers greater flexibility by allowing text prompts to guide texture creation and adjustable noise levels to balance restoration and generation.
arXiv Detail & Related papers (2023-12-11T18:54:52Z) - Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation [93.18163456287164]
This paper proposes a novel text-guided video-to-video translation framework to adapt image models to videos.
Our framework achieves global style and local texture temporal consistency at a low cost.
arXiv Detail & Related papers (2023-06-13T17:52:23Z) - Implicit Temporal Modeling with Learnable Alignment for Video
Recognition [95.82093301212964]
We propose a novel Implicit Learnable Alignment (ILA) method, which minimizes the temporal modeling effort while achieving incredibly high performance.
ILA achieves a top-1 accuracy of 88.7% on Kinetics-400 with much fewer FLOPs compared with Swin-L and ViViT-H.
arXiv Detail & Related papers (2023-04-20T17:11:01Z) - Adaptive Compact Attention For Few-shot Video-to-video Translation [13.535988102579918]
We introduce a novel adaptive compact attention mechanism to efficiently extract contextual features jointly from multiple reference images.
Our core idea is to extract compact basis sets from all the reference images as higher-level representations.
We extensively evaluate our method on a large-scale talking-head video dataset and a human dancing dataset.
arXiv Detail & Related papers (2020-11-30T11:19:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.