Fundamental Components of Deep Learning: A category-theoretic approach
- URL: http://arxiv.org/abs/2403.13001v1
- Date: Wed, 13 Mar 2024 01:29:40 GMT
- Title: Fundamental Components of Deep Learning: A category-theoretic approach
- Authors: Bruno Gavranović,
- Abstract summary: This thesis develops a novel mathematical foundation for deep learning based on the language of category theory.
We also systematise many existing approaches, placing many existing constructions and concepts under the same umbrella.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning, despite its remarkable achievements, is still a young field. Like the early stages of many scientific disciplines, it is marked by the discovery of new phenomena, ad-hoc design decisions, and the lack of a uniform and compositional mathematical foundation. From the intricacies of the implementation of backpropagation, through a growing zoo of neural network architectures, to the new and poorly understood phenomena such as double descent, scaling laws or in-context learning, there are few unifying principles in deep learning. This thesis develops a novel mathematical foundation for deep learning based on the language of category theory. We develop a new framework that is a) end-to-end, b) unform, and c) not merely descriptive, but prescriptive, meaning it is amenable to direct implementation in programming languages with sufficient features. We also systematise many existing approaches, placing many existing constructions and concepts from the literature under the same umbrella. In Part I we identify and model two main properties of deep learning systems parametricity and bidirectionality by we expand on the previously defined construction of actegories and Para to study the former, and define weighted optics to study the latter. Combining them yields parametric weighted optics, a categorical model of artificial neural networks, and more. Part II justifies the abstractions from Part I, applying them to model backpropagation, architectures, and supervised learning. We provide a lens-theoretic axiomatisation of differentiation, covering not just smooth spaces, but discrete settings of boolean circuits as well. We survey existing, and develop new categorical models of neural network architectures. We formalise the notion of optimisers and lastly, combine all the existing concepts together, providing a uniform and compositional framework for supervised learning.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Towards a Categorical Foundation of Deep Learning: A Survey [0.0]
This thesis is a survey that covers some recent work attempting to study machine learning categorically.
acting as a lingua franca of mathematics and science, category theory might be able to give a unifying structure to the field of machine learning.
arXiv Detail & Related papers (2024-10-07T13:11:16Z) - Categorical semiotics: Foundations for Knowledge Integration [0.0]
We tackle the challenging task of developing a comprehensive framework for defining and analyzing deep learning architectures.
Our methodology employs graphical structures that resemble Ehresmann's sketches, interpreted within a universe of fuzzy sets.
This approach offers a unified theory that elegantly encompasses both deterministic and non-deterministic neural network designs.
arXiv Detail & Related papers (2024-04-01T23:19:01Z) - Discovering Latent Concepts Learned in BERT [21.760620298330235]
We study what latent concepts exist in the pre-trained BERT model.
We also release a novel BERT ConceptNet dataset (BCN) consisting of 174 concept labels and 1M annotated instances.
arXiv Detail & Related papers (2022-05-15T09:45:34Z) - Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges [50.22269760171131]
The last decade has witnessed an experimental revolution in data science and machine learning, epitomised by deep learning methods.
This text is concerned with exposing pre-defined regularities through unified geometric principles.
It provides a common mathematical framework to study the most successful neural network architectures, such as CNNs, RNNs, GNNs, and Transformers.
arXiv Detail & Related papers (2021-04-27T21:09:51Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of complex problems contain a series of closely related subproblms.
In this paper, we first uniformly express these complex learning and vision problems from the perspective of Bi-Level Optimization (BLO)
Then we construct a value-function-based single-level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies.
arXiv Detail & Related papers (2021-01-27T16:20:23Z) - Formalising Concepts as Grounded Abstractions [68.24080871981869]
This report shows how representation learning can be used to induce concepts from raw data.
The main technical goal of this report is to show how techniques from representation learning can be married with a lattice-theoretic formulation of conceptual spaces.
arXiv Detail & Related papers (2021-01-13T15:22:01Z) - Recent advances in deep learning theory [104.01582662336256]
This paper reviews and organizes the recent advances in deep learning theory.
The literature is categorized in six groups: (1) complexity and capacity-based approaches for analysing the generalizability of deep learning; (2) differential equations and their dynamic systems for modelling gradient descent and its variants; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; and (5) theoretical foundations of several special structures in network architectures.
arXiv Detail & Related papers (2020-12-20T14:16:41Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.