Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0
- URL: http://arxiv.org/abs/2403.13237v2
- Date: Wed, 8 May 2024 06:40:19 GMT
- Title: Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0
- Authors: Jiana Liao, Jinbo Wen, Jiawen Kang, Changyan Yi, Yang Zhang, Yutao Jiao, Dusit Niyato, Dong In Kim, Shengli Xie,
- Abstract summary: We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
- Score: 59.94605620983965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Web 3.0 is recognized as a pioneering paradigm that empowers users to securely oversee data without reliance on a centralized authority. Blockchains, as a core technology to realize Web 3.0, can facilitate decentralized and transparent data management. Nevertheless, the evolution of blockchain-enabled Web 3.0 is still in its nascent phase, grappling with challenges such as ensuring efficiency and reliability to enhance block propagation performance. In this paper, we design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0. We first innovatively apply a data-freshness metric called age of block to measure block propagation efficiency in public blockchains. To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model, including the local and recommended opinions to calculate the miner reputation value. Moreover, considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory. Numerical results demonstrate that the proposed scheme exhibits the most outstanding block propagation efficiency and reliability compared with traditional routing mechanisms.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Blockchain Takeovers in Web 3.0: An Empirical Study on the TRON-Steem Incident [11.681753873893173]
We present a thorough empirical analysis of the Tron-Steem takeover incident.
We quantify the marked shifts in decentralization pre and post the takeover incident.
arXiv Detail & Related papers (2024-07-25T07:31:15Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Enhanced Security and Efficiency in Blockchain with Aggregated Zero-Knowledge Proof Mechanisms [15.034624246970154]
Current approaches to data verification in blockchain systems face challenges in terms of efficiency and computational overhead.
This study proposes an innovative aggregation scheme for Zero-Knowledge Proofs within the structure of Merkle Trees.
We develop a system that significantly reduces the size of the proof and the computational resources needed for its generation and verification.
arXiv Detail & Related papers (2024-02-06T09:26:46Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients.
Existing works require central servers to retain the historical model parameters from distributed clients.
This paper proposes a new blockchain-enabled trustworthy federated unlearning framework.
arXiv Detail & Related papers (2024-01-29T07:04:48Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - A Novel Blockchain Based Information Management Framework for Web 3.0 [30.15143659169484]
We propose a novel blockchain-based information management framework, namely Smart-based Web.
We develop an effective consensus mechanism based on Proof-of-Stake to reward the user's information contribution.
The findings confirm our theoretical analysis and demonstrate that our proposed consensus mechanism can incentivize the nodes and users to contribute more information.
arXiv Detail & Related papers (2024-01-23T12:34:02Z) - When Quantum Information Technologies Meet Blockchain in Web 3.0 [86.91054991998273]
We introduce a quantum blockchain-driven Web 3.0 framework that provides information-theoretic security for decentralized data transferring and payment transactions.
We discuss the potential applications and challenges of implementing quantum blockchain in Web 3.0.
arXiv Detail & Related papers (2022-11-29T05:38:42Z) - Secure and Efficient Federated Learning Through Layering and Sharding
Blockchain [15.197940168865271]
This paper proposes ChainFL, a novel two-layer blockchain-driven Federated Learning system.
It splits the Internet network into multiple shards within the subchain layer, effectively reducing the scale of information exchange.
It also employs a Direct Acyclic Graph (DAG)-based mainchain as the mainchain layer, enabling parallel and asynchronous cross-shard validation.
arXiv Detail & Related papers (2021-04-27T12:19:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.