Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations
- URL: http://arxiv.org/abs/2403.13261v2
- Date: Thu, 21 Mar 2024 15:40:16 GMT
- Title: Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations
- Authors: Kewei Wang, Yizheng Wu, Jun Cen, Zhiyu Pan, Xingyi Li, Zhe Wang, Zhiguo Cao, Guosheng Lin,
- Abstract summary: Class-agnostic motion prediction methods directly predict the motion of the entire point cloud.
While most existing methods rely on fully-supervised learning, the manual labeling of point cloud data is laborious and time-consuming.
We introduce three simple spatial and temporal regularization losses, which facilitate the self-supervised training process effectively.
- Score: 53.797896854533384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The perception of motion behavior in a dynamic environment holds significant importance for autonomous driving systems, wherein class-agnostic motion prediction methods directly predict the motion of the entire point cloud. While most existing methods rely on fully-supervised learning, the manual labeling of point cloud data is laborious and time-consuming. Therefore, several annotation-efficient methods have been proposed to address this challenge. Although effective, these methods rely on weak annotations or additional multi-modal data like images, and the potential benefits inherent in the point cloud sequence are still underexplored. To this end, we explore the feasibility of self-supervised motion prediction with only unlabeled LiDAR point clouds. Initially, we employ an optimal transport solver to establish coarse correspondences between current and future point clouds as the coarse pseudo motion labels. Training models directly using such coarse labels leads to noticeable spatial and temporal prediction inconsistencies. To mitigate these issues, we introduce three simple spatial and temporal regularization losses, which facilitate the self-supervised training process effectively. Experimental results demonstrate the significant superiority of our approach over the state-of-the-art self-supervised methods.
Related papers
- Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles [8.398221841050349]
Trajectory prediction describes the motions of surrounding moving obstacles for an autonomous vehicle.
In this paper, we aim to establish real-time awareness of out-of-distribution in trajectory prediction for autonomous vehicles.
Our solutions are lightweight and can handle the occurrence of out-of-distribution at any time during trajectory prediction inference.
arXiv Detail & Related papers (2024-09-25T18:43:58Z) - Enhancing End-to-End Autonomous Driving with Latent World Model [78.22157677787239]
We propose a novel self-supervised method to enhance end-to-end driving without the need for costly labels.
Our framework textbfLAW uses a LAtent World model to predict future latent features based on the predicted ego actions and the latent feature of the current frame.
As a result, our approach achieves state-of-the-art performance in both open-loop and closed-loop benchmarks without costly annotations.
arXiv Detail & Related papers (2024-06-12T17:59:21Z) - ADM: Accelerated Diffusion Model via Estimated Priors for Robust Motion Prediction under Uncertainties [6.865435680843742]
We propose a novel diffusion-based, acceleratable framework that adeptly predicts future trajectories of agents with enhanced resistance to noise.
Our method meets the rigorous real-time operational standards essential for autonomous vehicles.
It achieves significant improvement in multi-agent motion prediction on the Argoverse 1 motion forecasting dataset.
arXiv Detail & Related papers (2024-05-01T18:16:55Z) - Self-Supervised Bird's Eye View Motion Prediction with Cross-Modality
Signals [38.20643428486824]
Learning the dense bird's eye view (BEV) motion flow in a self-supervised manner is an emerging research for robotics and autonomous driving.
Current self-supervised methods mainly rely on point correspondences between point clouds.
We introduce a novel cross-modality self-supervised training framework that effectively addresses these issues by leveraging multi-modality data.
arXiv Detail & Related papers (2024-01-21T14:09:49Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
We study the potential of semi-supervised learning for class-agnostic motion prediction.
Our framework adopts a consistency-based self-training paradigm, enabling the model to learn from unlabeled data.
Our method exhibits comparable performance to weakly and some fully supervised methods.
arXiv Detail & Related papers (2023-12-13T09:32:50Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
We present a novel framework to bootstrap Motion forecasting with Self-consistent Constraints.
The motion forecasting task aims at predicting future trajectories of vehicles by incorporating spatial and temporal information from the past.
We show that our proposed scheme consistently improves the prediction performance of several existing methods.
arXiv Detail & Related papers (2022-04-12T14:59:48Z) - Spatiotemporal Transformer Attention Network for 3D Voxel Level Joint
Segmentation and Motion Prediction in Point Cloud [9.570438238511073]
Motion prediction is key enabler for automated driving systems and intelligent transportation applications.
Current challenges are how to effectively combine different perception tasks into a single backbone.
We propose a novel attention network based on a transformer self-attention mechanism for joint semantic segmentation.
arXiv Detail & Related papers (2022-02-28T23:18:27Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - Self-Supervised Pillar Motion Learning for Autonomous Driving [10.921208239968827]
We propose a learning framework that leverages free supervisory signals from point clouds and paired camera images to estimate motion purely via self-supervision.
Our model involves a point cloud based structural consistency augmented with probabilistic motion masking as well as a cross-sensor motion regularization to realize the desired self-supervision.
arXiv Detail & Related papers (2021-04-18T02:32:08Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.