Text-to-3D Shape Generation
- URL: http://arxiv.org/abs/2403.13289v1
- Date: Wed, 20 Mar 2024 04:03:44 GMT
- Title: Text-to-3D Shape Generation
- Authors: Han-Hung Lee, Manolis Savva, Angel X. Chang,
- Abstract summary: Computational systems that can perform text-to-3D shape generation have captivated the popular imagination.
We provide a survey of the underlying technology and methods enabling text-to-3D shape generation to summarize the background literature.
We then derive a systematic categorization of recent work on text-to-3D shape generation based on the type of supervision data required.
- Score: 18.76771062964711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have seen an explosion of work and interest in text-to-3D shape generation. Much of the progress is driven by advances in 3D representations, large-scale pretraining and representation learning for text and image data enabling generative AI models, and differentiable rendering. Computational systems that can perform text-to-3D shape generation have captivated the popular imagination as they enable non-expert users to easily create 3D content directly from text. However, there are still many limitations and challenges remaining in this problem space. In this state-of-the-art report, we provide a survey of the underlying technology and methods enabling text-to-3D shape generation to summarize the background literature. We then derive a systematic categorization of recent work on text-to-3D shape generation based on the type of supervision data required. Finally, we discuss limitations of the existing categories of methods, and delineate promising directions for future work.
Related papers
- A Survey On Text-to-3D Contents Generation In The Wild [5.875257756382124]
3D content creation plays a vital role in various applications, such as gaming, robotics simulation, and virtual reality.
To address this challenge, text-to-3D generation technologies have emerged as a promising solution for automating 3D creation.
arXiv Detail & Related papers (2024-05-15T15:23:22Z) - A Comprehensive Survey on 3D Content Generation [148.434661725242]
3D content generation shows both academic and practical values.
New taxonomy is proposed that categorizes existing approaches into three types: 3D native generative methods, 2D prior-based 3D generative methods, and hybrid 3D generative methods.
arXiv Detail & Related papers (2024-02-02T06:20:44Z) - Advances in 3D Generation: A Survey [54.95024616672868]
The field of 3D content generation is developing rapidly, enabling the creation of increasingly high-quality and diverse 3D models.
Specifically, we introduce the 3D representations that serve as the backbone for 3D generation.
We provide a comprehensive overview of the rapidly growing literature on generation methods, categorized by the type of algorithmic paradigms.
arXiv Detail & Related papers (2024-01-31T13:06:48Z) - VolumeDiffusion: Flexible Text-to-3D Generation with Efficient Volumetric Encoder [56.59814904526965]
This paper introduces a pioneering 3D encoder designed for text-to-3D generation.
A lightweight network is developed to efficiently acquire feature volumes from multi-view images.
The 3D volumes are then trained on a diffusion model for text-to-3D generation using a 3D U-Net.
arXiv Detail & Related papers (2023-12-18T18:59:05Z) - ET3D: Efficient Text-to-3D Generation via Multi-View Distillation [11.520777124553195]
We present an efficient text-to-3D generation method, which requires only around 8 $ms$ to generate a 3D asset given the text prompt on a consumer graphic card.
Our method requires no 3D training data and provides an alternative approach for efficient text-to-3D generation by distilling pre-trained image diffusion models.
arXiv Detail & Related papers (2023-11-27T06:14:23Z) - Towards High-Fidelity Text-Guided 3D Face Generation and Manipulation
Using only Images [105.92311979305065]
TG-3DFace creates more realistic and aesthetically pleasing 3D faces, boosting 9% multi-view consistency (MVIC) over Latent3D.
The rendered face images generated by TG-3DFace achieve higher FID and CLIP score than text-to-2D face/image generation models.
arXiv Detail & Related papers (2023-08-31T14:26:33Z) - T2TD: Text-3D Generation Model based on Prior Knowledge Guidance [74.32278935880018]
We propose a novel text-3D generation model (T2TD), which introduces the related shapes or textual information as the prior knowledge to improve the performance of the 3D generation model.
Our approach significantly improves 3D model generation quality and outperforms the SOTA methods on the text2shape datasets.
arXiv Detail & Related papers (2023-05-25T06:05:52Z) - Generative AI meets 3D: A Survey on Text-to-3D in AIGC Era [36.66506237523448]
Generative AI has made significant progress in recent years, with text-guided content generation being the most practical.
Thanks to advancements in text-to-image and 3D modeling technologies, like neural radiance field (NeRF), text-to-3D has emerged as a nascent yet highly active research field.
arXiv Detail & Related papers (2023-05-10T13:26:08Z) - Towards Implicit Text-Guided 3D Shape Generation [81.22491096132507]
This work explores the challenging task of generating 3D shapes from text.
We propose a new approach for text-guided 3D shape generation, capable of producing high-fidelity shapes with colors that match the given text description.
arXiv Detail & Related papers (2022-03-28T10:20:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.