Learning Novel View Synthesis from Heterogeneous Low-light Captures
- URL: http://arxiv.org/abs/2403.13337v1
- Date: Wed, 20 Mar 2024 06:44:26 GMT
- Title: Learning Novel View Synthesis from Heterogeneous Low-light Captures
- Authors: Quan Zheng, Hao Sun, Huiyao Xu, Fanjiang Xu,
- Abstract summary: We propose to decompose illumination, reflectance, and noise from input views according to that reflectance remains invariant across heterogeneous views.
To cope with heterogeneous brightness and noise levels across multi-views, we learn an illumination embedding and optimize a noise map individually for each view.
- Score: 7.888623669945243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural radiance field has achieved fundamental success in novel view synthesis from input views with the same brightness level captured under fixed normal lighting. Unfortunately, synthesizing novel views remains to be a challenge for input views with heterogeneous brightness level captured under low-light condition. The condition is pretty common in the real world. It causes low-contrast images where details are concealed in the darkness and camera sensor noise significantly degrades the image quality. To tackle this problem, we propose to learn to decompose illumination, reflectance, and noise from input views according to that reflectance remains invariant across heterogeneous views. To cope with heterogeneous brightness and noise levels across multi-views, we learn an illumination embedding and optimize a noise map individually for each view. To allow intuitive editing of the illumination, we design an illumination adjustment module to enable either brightening or darkening of the illumination component. Comprehensive experiments demonstrate that this approach enables effective intrinsic decomposition for low-light multi-view noisy images and achieves superior visual quality and numerical performance for synthesizing novel views compared to state-of-the-art methods.
Related papers
- Sampling for View Synthesis: From Local Light Field Fusion to Neural Radiance Fields and Beyond [27.339452004523082]
Local light field fusion proposes an algorithm for practical view synthesis from an irregular grid of sampled views.
We achieve the perceptual quality of Nyquist rate view sampling while using up to 4000x fewer views.
We reprise some of the recent results on sparse and even single image view synthesis.
arXiv Detail & Related papers (2024-08-08T16:56:03Z) - A Non-Uniform Low-Light Image Enhancement Method with Multi-Scale
Attention Transformer and Luminance Consistency Loss [11.585269110131659]
Low-light image enhancement aims to improve the perception of images collected in dim environments.
Existing methods cannot adaptively extract the differentiated luminance information, which will easily cause over-exposure and under-exposure.
We propose a multi-scale attention Transformer named MSATr, which sufficiently extracts local and global features for light balance to improve the visual quality.
arXiv Detail & Related papers (2023-12-27T10:07:11Z) - WildLight: In-the-wild Inverse Rendering with a Flashlight [77.31815397135381]
We propose a practical photometric solution for in-the-wild inverse rendering under unknown ambient lighting.
Our system recovers scene geometry and reflectance using only multi-view images captured by a smartphone.
We demonstrate by extensive experiments that our method is easy to implement, casual to set up, and consistently outperforms existing in-the-wild inverse rendering techniques.
arXiv Detail & Related papers (2023-03-24T17:59:56Z) - Few-shot Neural Radiance Fields Under Unconstrained Illumination [40.384916810850385]
We introduce a new challenge for synthesizing novel view images in practical environments with limited input multi-view images and varying lighting conditions.
NeRF, one of the pioneering works for this task, demand an extensive set of multi-view images taken under constrained illumination.
We suggest ExtremeNeRF, which utilizes multi-view albedo consistency, supported by geometric alignment.
arXiv Detail & Related papers (2023-03-21T10:32:27Z) - Neural Radiance Transfer Fields for Relightable Novel-view Synthesis
with Global Illumination [63.992213016011235]
We propose a method for scene relighting under novel views by learning a neural precomputed radiance transfer function.
Our method can be solely supervised on a set of real images of the scene under a single unknown lighting condition.
Results show that the recovered disentanglement of scene parameters improves significantly over the current state of the art.
arXiv Detail & Related papers (2022-07-27T16:07:48Z) - Low-light Image Enhancement via Breaking Down the Darkness [8.707025631892202]
This paper presents a novel framework inspired by the divide-and-rule principle.
We propose to convert an image from the RGB space into a luminance-chrominance one.
An adjustable noise suppression network is designed to eliminate noise in the brightened luminance.
The enhanced luminance further serves as guidance for the chrominance mapper to generate realistic colors.
arXiv Detail & Related papers (2021-11-30T16:50:59Z) - Neural Light Transport for Relighting and View Synthesis [70.39907425114302]
Light transport (LT) of a scene describes how it appears under different lighting and viewing directions.
We propose a semi-parametric approach to learn a neural representation of LT embedded in a texture atlas of known geometric properties.
We show how to fuse previously seen observations of illuminants and views to synthesize a new image of the same scene under a desired lighting condition.
arXiv Detail & Related papers (2020-08-09T20:13:15Z) - Crowdsampling the Plenoptic Function [56.10020793913216]
We present a new approach to novel view synthesis under time-varying illumination from such data.
We introduce a new DeepMPI representation, motivated by observations on the sparsity structure of the plenoptic function.
Our method can synthesize the same compelling parallax and view-dependent effects as previous MPI methods, while simultaneously interpolating along changes in reflectance and illumination with time.
arXiv Detail & Related papers (2020-07-30T02:52:10Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
Low-light images suffer from poor visibility caused by low contrast, color distortion and measurement noise.
This paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise.
The proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.
arXiv Detail & Related papers (2020-07-04T06:26:44Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.