HyperLLaVA: Dynamic Visual and Language Expert Tuning for Multimodal Large Language Models
- URL: http://arxiv.org/abs/2403.13447v1
- Date: Wed, 20 Mar 2024 09:42:43 GMT
- Title: HyperLLaVA: Dynamic Visual and Language Expert Tuning for Multimodal Large Language Models
- Authors: Wenqiao Zhang, Tianwei Lin, Jiang Liu, Fangxun Shu, Haoyuan Li, Lei Zhang, He Wanggui, Hao Zhou, Zheqi Lv, Hao Jiang, Juncheng Li, Siliang Tang, Yueting Zhuang,
- Abstract summary: We introduce HyperLLaVA, which involves adaptive tuning of the projector and LLM parameters, in conjunction with a dynamic visual expert and language expert.
Our solution significantly surpasses LLaVA on existing MLLM benchmarks, including MME, MMBench, SEED-Bench, and LLaVA-Bench.
- Score: 70.25499865569353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements indicate that scaling up Multimodal Large Language Models (MLLMs) effectively enhances performance on downstream multimodal tasks. The prevailing MLLM paradigm, \emph{e.g.}, LLaVA, transforms visual features into text-like tokens using a \emph{static} vision-language mapper, thereby enabling \emph{static} LLMs to develop the capability to comprehend visual information through visual instruction tuning. Although promising, the \emph{static} tuning strategy~\footnote{The static tuning refers to the trained model with static parameters.} that shares the same parameters may constrain performance across different downstream multimodal tasks. In light of this, we introduce HyperLLaVA, which involves adaptive tuning of the projector and LLM parameters, in conjunction with a dynamic visual expert and language expert, respectively. These experts are derived from HyperNetworks, which generates adaptive parameter shifts through visual and language guidance, enabling dynamic projector and LLM modeling in two-stage training. Our experiments demonstrate that our solution significantly surpasses LLaVA on existing MLLM benchmarks, including MME, MMBench, SEED-Bench, and LLaVA-Bench. ~\footnote{Our project is available on the link https://github.com/DCDmllm/HyperLLaVA}.
Related papers
- EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - SEA: Supervised Embedding Alignment for Token-Level Visual-Textual Integration in MLLMs [40.74693126923826]
Multimodal Large Language Models (MLLMs) have recently demonstrated remarkable perceptual and reasoning abilities.
Training adapters with image-level supervision often results in significant misalignment.
We introduce Supervised Embedding Alignment (SEA), a token-level alignment method that leverages vision-language pre-trained models.
arXiv Detail & Related papers (2024-08-21T17:58:02Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) is a simple and effective approach to generate visual prompts that can transfer to different models and improve their performance on downstream tasks after trained on only one model.
We introduce two strategies to address the issue of cross-model feature corruption of existing visual prompting methods and enhance the transferability of the learned prompts.
arXiv Detail & Related papers (2024-04-17T09:39:07Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
multimodal large language models (MLLMs) have attracted growing interest.
This work delves into enabling LLMs to tackle more vision-language-related tasks.
InfMLLM achieves either state-of-the-art (SOTA) performance or performance comparable to recent MLLMs.
arXiv Detail & Related papers (2023-11-12T09:58:16Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
We propose Position-enhanced Visual Instruction Tuning (PVIT) to extend the functionality of Multimodal Large Language Models (MLLMs)
This integration promotes a more detailed comprehension of images for the MLLM.
We present both quantitative experiments and qualitative analysis that demonstrate the superiority of the proposed model.
arXiv Detail & Related papers (2023-08-25T15:33:47Z) - Cheap and Quick: Efficient Vision-Language Instruction Tuning for Large
Language Models [77.2078051555533]
We propose a novel and affordable solution for the effective VL adaption of large language models (LLMs)
Instead of using large neural networks to connect the image encoder and LLM, MMA adopts lightweight modules, i.e., adapters.
MMA is also equipped with a routing algorithm to help LLMs achieve an automatic shift between single- and multi-modal instructions.
arXiv Detail & Related papers (2023-05-24T11:06:15Z) - Towards Versatile and Efficient Visual Knowledge Integration into
Pre-trained Language Models with Cross-Modal Adapters [16.44174900423759]
We propose a new plug-and-play module, X-adapter, to leverage the aligned visual and textual knowledge learned in pre-trained vision-language models.
Our method can significantly improve the performance on object-color reasoning and natural language understanding tasks.
arXiv Detail & Related papers (2023-05-12T10:08:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.