Motion Generation from Fine-grained Textual Descriptions
- URL: http://arxiv.org/abs/2403.13518v2
- Date: Tue, 26 Mar 2024 11:16:47 GMT
- Title: Motion Generation from Fine-grained Textual Descriptions
- Authors: Kunhang Li, Yansong Feng,
- Abstract summary: We build a large-scale language-motion dataset specializing in fine-grained textual descriptions, FineHumanML3D.
We design a new text2motion model, FineMotionDiffuse, making full use of fine-grained textual information.
Our evaluation shows that FineMotionDiffuse trained on FineHumanML3D improves FID by a large margin of 0.38, compared with competitive baselines.
- Score: 29.033358642532722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of text2motion is to generate human motion sequences from given textual descriptions, where the model explores diverse mappings from natural language instructions to human body movements. While most existing works are confined to coarse-grained motion descriptions, e.g., "A man squats.", fine-grained descriptions specifying movements of relevant body parts are barely explored. Models trained with coarse-grained texts may not be able to learn mappings from fine-grained motion-related words to motion primitives, resulting in the failure to generate motions from unseen descriptions. In this paper, we build a large-scale language-motion dataset specializing in fine-grained textual descriptions, FineHumanML3D, by feeding GPT-3.5-turbo with step-by-step instructions with pseudo-code compulsory checks. Accordingly, we design a new text2motion model, FineMotionDiffuse, making full use of fine-grained textual information. Our quantitative evaluation shows that FineMotionDiffuse trained on FineHumanML3D improves FID by a large margin of 0.38, compared with competitive baselines. According to the qualitative evaluation and case study, our model outperforms MotionDiffuse in generating spatially or chronologically composite motions, by learning the implicit mappings from fine-grained descriptions to the corresponding basic motions. We release our data at https://github.com/KunhangL/finemotiondiffuse.
Related papers
- MotionFix: Text-Driven 3D Human Motion Editing [52.11745508960547]
Key challenges include the scarcity of training data and the need to design a model that accurately edits the source motion.
We propose a methodology to semi-automatically collect a dataset of triplets comprising (i) a source motion, (ii) a target motion, and (iii) an edit text.
Access to this data allows us to train a conditional diffusion model, TMED, that takes both the source motion and the edit text as input.
arXiv Detail & Related papers (2024-08-01T16:58:50Z) - Generating Human Interaction Motions in Scenes with Text Control [66.74298145999909]
We present TeSMo, a method for text-controlled scene-aware motion generation based on denoising diffusion models.
Our approach begins with pre-training a scene-agnostic text-to-motion diffusion model.
To facilitate training, we embed annotated navigation and interaction motions within scenes.
arXiv Detail & Related papers (2024-04-16T16:04:38Z) - BOTH2Hands: Inferring 3D Hands from Both Text Prompts and Body Dynamics [50.88842027976421]
We propose BOTH57M, a novel multi-modal dataset for two-hand motion generation.
Our dataset includes accurate motion tracking for the human body and hands.
We also provide a strong baseline method, BOTH2Hands, for the novel task.
arXiv Detail & Related papers (2023-12-13T07:30:19Z) - LivePhoto: Real Image Animation with Text-guided Motion Control [51.31418077586208]
This work presents a practical system, named LivePhoto, which allows users to animate an image of their interest with text descriptions.
We first establish a strong baseline that helps a well-learned text-to-image generator (i.e., Stable Diffusion) take an image as a further input.
We then equip the improved generator with a motion module for temporal modeling and propose a carefully designed training pipeline to better link texts and motions.
arXiv Detail & Related papers (2023-12-05T17:59:52Z) - Story-to-Motion: Synthesizing Infinite and Controllable Character
Animation from Long Text [14.473103773197838]
A new task, Story-to-Motion, arises when characters are required to perform specific motions based on a long text description.
Previous works in character control and text-to-motion have addressed related aspects, yet a comprehensive solution remains elusive.
We propose a novel system that generates controllable, infinitely long motions and trajectories aligned with the input text.
arXiv Detail & Related papers (2023-11-13T16:22:38Z) - Act As You Wish: Fine-Grained Control of Motion Diffusion Model with
Hierarchical Semantic Graphs [31.244039305932287]
We propose hierarchical semantic graphs for fine-grained control over motion generation.
We disentangle motion descriptions into hierarchical semantic graphs including three levels of motions, actions, and specifics.
Our method can continuously refine the generated motion, which may have a far-reaching impact on the community.
arXiv Detail & Related papers (2023-11-02T06:20:23Z) - MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model [35.32967411186489]
MotionDiffuse is a diffusion model-based text-driven motion generation framework.
It excels at modeling complicated data distribution and generating vivid motion sequences.
It responds to fine-grained instructions on body parts, and arbitrary-length motion synthesis with time-varied text prompts.
arXiv Detail & Related papers (2022-08-31T17:58:54Z) - TM2T: Stochastic and Tokenized Modeling for the Reciprocal Generation of
3D Human Motions and Texts [20.336481832461168]
Inspired by the strong ties between vision and language, our paper aims to explore the generation of 3D human full-body motions from texts.
We propose the use of motion token, a discrete and compact motion representation.
Our approach is flexible, could be used for both text2motion and motion2text tasks.
arXiv Detail & Related papers (2022-07-04T19:52:18Z) - TEMOS: Generating diverse human motions from textual descriptions [53.85978336198444]
We address the problem of generating diverse 3D human motions from textual descriptions.
We propose TEMOS, a text-conditioned generative model leveraging variational autoencoder (VAE) training with human motion data.
We show that TEMOS framework can produce both skeleton-based animations as in prior work, as well more expressive SMPL body motions.
arXiv Detail & Related papers (2022-04-25T14:53:06Z) - Synthesis of Compositional Animations from Textual Descriptions [54.85920052559239]
"How unstructured and complex can we make a sentence and still generate plausible movements from it?"
"How can we animate 3D-characters from a movie script or move robots by simply telling them what we would like them to do?"
arXiv Detail & Related papers (2021-03-26T18:23:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.