Ground-A-Score: Scaling Up the Score Distillation for Multi-Attribute Editing
- URL: http://arxiv.org/abs/2403.13551v1
- Date: Wed, 20 Mar 2024 12:40:32 GMT
- Title: Ground-A-Score: Scaling Up the Score Distillation for Multi-Attribute Editing
- Authors: Hangeol Chang, Jinho Chang, Jong Chul Ye,
- Abstract summary: Ground-A-Score is a powerful model-agnostic image editing method by incorporating grounding during score distillation.
The selective application with a new penalty coefficient and contrastive loss helps to precisely target editing areas.
Both qualitative assessments and quantitative analyses confirm that Ground-A-Score successfully adheres to the intricate details of extended and multifaceted prompts.
- Score: 49.419619882284906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent advancements in text-to-image diffusion models facilitating various image editing techniques, complex text prompts often lead to an oversight of some requests due to a bottleneck in processing text information. To tackle this challenge, we present Ground-A-Score, a simple yet powerful model-agnostic image editing method by incorporating grounding during score distillation. This approach ensures a precise reflection of intricate prompt requirements in the editing outcomes, taking into account the prior knowledge of the object locations within the image. Moreover, the selective application with a new penalty coefficient and contrastive loss helps to precisely target editing areas while preserving the integrity of the objects in the source image. Both qualitative assessments and quantitative analyses confirm that Ground-A-Score successfully adheres to the intricate details of extended and multifaceted prompts, ensuring high-quality outcomes that respect the original image attributes.
Related papers
- PixLens: A Novel Framework for Disentangled Evaluation in Diffusion-Based Image Editing with Object Detection + SAM [17.89238060470998]
evaluating diffusion-based image-editing models is a crucial task in the field of Generative AI.
Our benchmark, PixLens, provides a comprehensive evaluation of both edit quality and latent representation disentanglement.
arXiv Detail & Related papers (2024-10-08T06:05:15Z) - Task-driven single-image super-resolution reconstruction of document scans [2.8391355909797644]
We investigate the possibility of employing super-resolution as a preprocessing step to improve optical character recognition from document scans.
To achieve that, we propose to train deep networks for single-image super-resolution in a task-driven way to make them better adapted for the purpose of text detection.
arXiv Detail & Related papers (2024-07-12T05:18:26Z) - Text Guided Image Editing with Automatic Concept Locating and Forgetting [27.70615803908037]
We propose a novel method called Locate and Forget (LaF) to locate potential target concepts in the image for modification.
Compared to the baselines, our method demonstrates its superiority in text-guided image editing tasks both qualitatively and quantitatively.
arXiv Detail & Related papers (2024-05-30T05:36:32Z) - LoMOE: Localized Multi-Object Editing via Multi-Diffusion [8.90467024388923]
We introduce a novel framework for zero-shot localized multi-object editing through a multi-diffusion process.
Our approach leverages foreground masks and corresponding simple text prompts that exert localized influences on the target regions.
A combination of cross-attention and background losses within the latent space ensures that the characteristics of the object being edited are preserved.
arXiv Detail & Related papers (2024-03-01T10:46:47Z) - Optimisation-Based Multi-Modal Semantic Image Editing [58.496064583110694]
We propose an inference-time editing optimisation to accommodate multiple editing instruction types.
By allowing to adjust the influence of each loss function, we build a flexible editing solution that can be adjusted to user preferences.
We evaluate our method using text, pose and scribble edit conditions, and highlight our ability to achieve complex edits.
arXiv Detail & Related papers (2023-11-28T15:31:11Z) - Object-aware Inversion and Reassembly for Image Editing [61.19822563737121]
We propose Object-aware Inversion and Reassembly (OIR) to enable object-level fine-grained editing.
We use our search metric to find the optimal inversion step for each editing pair when editing an image.
Our method achieves superior performance in editing object shapes, colors, materials, categories, etc., especially in multi-object editing scenarios.
arXiv Detail & Related papers (2023-10-18T17:59:02Z) - Dynamic Prompt Learning: Addressing Cross-Attention Leakage for
Text-Based Image Editing [23.00202969969574]
We propose Dynamic Prompt Learning (DPL) to force cross-attention maps to focus on correct noun words in the text prompt.
We show improved prompt editing results for Word-Swap, Prompt Refinement, and Attention Re-weighting, especially for complex multi-object scenes.
arXiv Detail & Related papers (2023-09-27T13:55:57Z) - iEdit: Localised Text-guided Image Editing with Weak Supervision [53.082196061014734]
We propose a novel learning method for text-guided image editing.
It generates images conditioned on a source image and a textual edit prompt.
It shows favourable results against its counterparts in terms of image fidelity, CLIP alignment score and qualitatively for editing both generated and real images.
arXiv Detail & Related papers (2023-05-10T07:39:14Z) - Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image
Inpainting [53.708523312636096]
We present Imagen Editor, a cascaded diffusion model built, by fine-tuning on text-guided image inpainting.
edits are faithful to the text prompts, which is accomplished by using object detectors to propose inpainting masks during training.
To improve qualitative and quantitative evaluation, we introduce EditBench, a systematic benchmark for text-guided image inpainting.
arXiv Detail & Related papers (2022-12-13T21:25:11Z) - High-Fidelity GAN Inversion for Image Attribute Editing [61.966946442222735]
We present a novel high-fidelity generative adversarial network (GAN) inversion framework that enables attribute editing with image-specific details well-preserved.
With a low bit-rate latent code, previous works have difficulties in preserving high-fidelity details in reconstructed and edited images.
We propose a distortion consultation approach that employs a distortion map as a reference for high-fidelity reconstruction.
arXiv Detail & Related papers (2021-09-14T11:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.