ZigMa: A DiT-style Zigzag Mamba Diffusion Model
- URL: http://arxiv.org/abs/2403.13802v2
- Date: Mon, 1 Apr 2024 17:58:02 GMT
- Title: ZigMa: A DiT-style Zigzag Mamba Diffusion Model
- Authors: Vincent Tao Hu, Stefan Andreas Baumann, Ming Gui, Olga Grebenkova, Pingchuan Ma, Johannes Fischer, Björn Ommer,
- Abstract summary: We aim to leverage the long sequence modeling capability of a State-Space Model called Mamba to extend its applicability to visual data generation.
We introduce a simple, plug-and-play, zero- parameter method named Zigzag Mamba, which outperforms Mamba-based baselines.
We integrate Zigzag Mamba with Interpolant framework to investigate the scalability of the model on large-resolution visual datasets.
- Score: 23.581004543220622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The diffusion model has long been plagued by scalability and quadratic complexity issues, especially within transformer-based structures. In this study, we aim to leverage the long sequence modeling capability of a State-Space Model called Mamba to extend its applicability to visual data generation. Firstly, we identify a critical oversight in most current Mamba-based vision methods, namely the lack of consideration for spatial continuity in the scan scheme of Mamba. Secondly, building upon this insight, we introduce a simple, plug-and-play, zero-parameter method named Zigzag Mamba, which outperforms Mamba-based baselines and demonstrates improved speed and memory utilization compared to transformer-based baselines. Lastly, we integrate Zigzag Mamba with the Stochastic Interpolant framework to investigate the scalability of the model on large-resolution visual datasets, such as FacesHQ $1024\times 1024$ and UCF101, MultiModal-CelebA-HQ, and MS COCO $256\times 256$ . Code will be released at https://taohu.me/zigma/
Related papers
- MaskMamba: A Hybrid Mamba-Transformer Model for Masked Image Generation [63.73137438677585]
MaskMamba is a novel hybrid model that combines Mamba and Transformer architectures.
It achieves a remarkable $54.44%$ improvement in inference speed at a resolution of $2048times 2048$ over Transformer.
arXiv Detail & Related papers (2024-09-30T04:28:55Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
We propose a pure Mamba-based framework (MambaVT) to fully exploit intrinsic-temporal contextual modeling for robust visible-thermal tracking.
Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations.
Experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks.
arXiv Detail & Related papers (2024-08-15T02:29:00Z) - LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba [54.85262314960038]
Local Attentional Mamba blocks capture both global contexts and local details with linear complexity.
Our model exhibits exceptional scalability and surpasses the performance of DiT across various model scales on ImageNet at 256x256 resolution.
Compared to state-of-the-art diffusion models on ImageNet 256x256 and 512x512, our largest model presents notable advantages, such as a reduction of up to 62% GFLOPs.
arXiv Detail & Related papers (2024-08-05T16:39:39Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
We propose a novel hybrid Mamba-Transformer backbone, denoted as MambaVision, which is specifically tailored for vision applications.
Our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features.
We conduct a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba.
arXiv Detail & Related papers (2024-07-10T23:02:45Z) - Demystify Mamba in Vision: A Linear Attention Perspective [72.93213667713493]
Mamba is an effective state space model with linear computation complexity.
We show that Mamba shares surprising similarities with linear attention Transformer.
We propose a Mamba-Like Linear Attention (MLLA) model by incorporating the merits of these two key designs into linear attention.
arXiv Detail & Related papers (2024-05-26T15:31:09Z) - Visual Mamba: A Survey and New Outlooks [33.90213491829634]
Mamba, a recent selective structured state space model, excels in long sequence modeling.
Since January 2024, Mamba has been actively applied to diverse computer vision tasks.
This paper reviews visual Mamba approaches, analyzing over 200 papers.
arXiv Detail & Related papers (2024-04-29T16:51:30Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
We propose PointMamba, transferring the success of Mamba, a recent representative state space model (SSM), from NLP to point cloud analysis tasks.
Unlike traditional Transformers, PointMamba employs a linear complexity algorithm, presenting global modeling capacity while significantly reducing computational costs.
arXiv Detail & Related papers (2024-02-16T14:56:13Z) - BlackMamba: Mixture of Experts for State-Space Models [10.209192169793772]
State-space models (SSMs) have recently demonstrated competitive performance to transformers at large-scale language modeling benchmarks.
MoE models have shown remarkable performance while significantly reducing the compute and latency costs of inference.
We present BlackMamba, a novel architecture that combines the Mamba SSM with MoE to obtain the benefits of both.
arXiv Detail & Related papers (2024-02-01T07:15:58Z) - SegMamba: Long-range Sequential Modeling Mamba For 3D Medical Image Segmentation [16.476244833079182]
We introduce SegMamba, a novel 3D medical image textbfSegmentation textbfMamba model.
SegMamba excels in whole volume feature modeling from a state space model standpoint.
Experiments on the BraTS2023 dataset demonstrate the effectiveness and efficiency of our SegMamba.
arXiv Detail & Related papers (2024-01-24T16:17:23Z) - Mamba: Linear-Time Sequence Modeling with Selective State Spaces [31.985243136674146]
Foundation models are almost universally based on the Transformer architecture and its core attention module.
We identify that a key weakness of such models is their inability to perform content-based reasoning.
We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even blocks (Mamba)
As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics.
arXiv Detail & Related papers (2023-12-01T18:01:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.