Optimal Transport for Domain Adaptation through Gaussian Mixture Models
- URL: http://arxiv.org/abs/2403.13847v1
- Date: Mon, 18 Mar 2024 09:32:33 GMT
- Title: Optimal Transport for Domain Adaptation through Gaussian Mixture Models
- Authors: Eduardo Fernandes Montesuma, Fred Maurice Ngolè Mboula, Antoine Souloumiac,
- Abstract summary: We propose a novel approach, where we model the data distributions through Gaussian mixture models.
The optimal transport solution gives us a matching between source and target domain mixture components.
We experiment with 2 domain adaptation benchmarks in fault diagnosis, showing that our methods have state-of-the-art performance.
- Score: 7.292229955481438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we explore domain adaptation through optimal transport. We propose a novel approach, where we model the data distributions through Gaussian mixture models. This strategy allows us to solve continuous optimal transport through an equivalent discrete problem. The optimal transport solution gives us a matching between source and target domain mixture components. From this matching, we can map data points between domains, or transfer the labels from the source domain components towards the target domain. We experiment with 2 domain adaptation benchmarks in fault diagnosis, showing that our methods have state-of-the-art performance.
Related papers
- Bidirectional Domain Mixup for Domain Adaptive Semantic Segmentation [73.3083304858763]
This paper systematically studies the impact of mixup under the domain adaptaive semantic segmentation task.
In specific, we achieve domain mixup in two-step: cut and paste.
We provide extensive ablation experiments to empirically verify our main components of the framework.
arXiv Detail & Related papers (2023-03-17T05:22:44Z) - Fast OT for Latent Domain Adaptation [25.915629674463286]
We propose an algorithm that uses optimal transport theory with a verifiably efficient and implementable solution to learn the best latent feature representation.
This is achieved by minimizing the cost of transporting the samples from the target domain to the distribution of the source domain.
arXiv Detail & Related papers (2022-10-02T10:25:12Z) - Connecting adversarial attacks and optimal transport for domain
adaptation [116.50515978657002]
In domain adaptation, the goal is to adapt a classifier trained on the source domain samples to the target domain.
In our method, we use optimal transport to map target samples to the domain named source fiction.
Our main idea is to generate a source fiction by c-cyclically monotone transformation over the target domain.
arXiv Detail & Related papers (2022-05-30T20:45:55Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Domain Adaptation for Time-Series Classification to Mitigate Covariate
Shift [3.071136270246468]
This paper proposes a novel supervised domain adaptation based on two steps.
First, we search for an optimal class-dependent transformation from the source to the target domain from a few samples.
Second, we use embedding similarity techniques to select the corresponding transformation at inference.
arXiv Detail & Related papers (2022-04-07T10:27:14Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Open Set Domain Adaptation using Optimal Transport [8.076841611508486]
We present a 2-step optimal transport approach that performs a mapping from a source distribution to a target distribution.
The first step aims at rejecting the samples issued from these new classes using an optimal transport plan.
The second step solves the target (class ratio) shift still as an optimal transport problem.
arXiv Detail & Related papers (2020-10-02T15:20:05Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z) - Multi-Source Domain Adaptation for Text Classification via
DistanceNet-Bandits [101.68525259222164]
We present a study of various distance-based measures in the context of NLP tasks, that characterize the dissimilarity between domains based on sample estimates.
We develop a DistanceNet model which uses these distance measures as an additional loss function to be minimized jointly with the task's loss function.
We extend this model to a novel DistanceNet-Bandit model, which employs a multi-armed bandit controller to dynamically switch between multiple source domains.
arXiv Detail & Related papers (2020-01-13T15:53:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.