Training point-based deep learning networks for forest segmentation with synthetic data
- URL: http://arxiv.org/abs/2403.14115v2
- Date: Wed, 17 Apr 2024 22:38:14 GMT
- Title: Training point-based deep learning networks for forest segmentation with synthetic data
- Authors: Francisco Raverta Capua, Juan Schandin, Pablo De Cristóforis,
- Abstract summary: We develop a realistic simulator that procedurally generates synthetic forest scenes.
We conduct a comparative study of different state-of-the-art point-based deep learning networks for forest segmentation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remote sensing through unmanned aerial systems (UAS) has been increasing in forestry in recent years, along with using machine learning for data processing. Deep learning architectures, extensively applied in natural language and image processing, have recently been extended to the point cloud domain. However, the availability of point cloud datasets for training and testing remains limited. Creating forested environment point cloud datasets is expensive, requires high-precision sensors, and is time-consuming as manual point classification is required. Moreover, forest areas could be inaccessible or dangerous for humans, further complicating data collection. Then, a question arises whether it is possible to use synthetic data to train deep learning networks without the need to rely on large volumes of real forest data. To answer this question, we developed a realistic simulator that procedurally generates synthetic forest scenes. Thanks to this, we have conducted a comparative study of different state-of-the-art point-based deep learning networks for forest segmentation. Using created datasets, we determined the feasibility of using synthetic data to train deep learning networks to classify point clouds from real forest datasets. Both the simulator and the datasets are released as part of this work.
Related papers
- Forest Inspection Dataset for Aerial Semantic Segmentation and Depth
Estimation [6.635604919499181]
We introduce a new large aerial dataset for forest inspection.
It contains both real-world and virtual recordings of natural environments.
We develop a framework to assess the deforestation degree of an area.
arXiv Detail & Related papers (2024-03-11T11:26:44Z) - SegmentAnyTree: A sensor and platform agnostic deep learning model for
tree segmentation using laser scanning data [15.438892555484616]
This research advances individual tree crown (ITC) segmentation in lidar data, using a deep learning model applicable to various laser scanning types.
It addresses the challenge of transferability across different data characteristics in 3D forest scene analysis.
The model, based on PointGroup architecture, is a 3D CNN with separate heads for semantic and instance segmentation.
arXiv Detail & Related papers (2024-01-28T19:47:17Z) - AutoSynth: Learning to Generate 3D Training Data for Object Point Cloud
Registration [69.21282992341007]
Auto Synth automatically generates 3D training data for point cloud registration.
We replace the point cloud registration network with a much smaller surrogate network, leading to a $4056.43$ speedup.
Our results on TUD-L, LINEMOD and Occluded-LINEMOD evidence that a neural network trained on our searched dataset yields consistently better performance than the same one trained on the widely used ModelNet40 dataset.
arXiv Detail & Related papers (2023-09-20T09:29:44Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
This paper presents the first comprehensive survey of label-efficient learning of point clouds.
We propose a taxonomy that organizes label-efficient learning methods based on the data prerequisites provided by different types of labels.
For each approach, we outline the problem setup and provide an extensive literature review that showcases relevant progress and challenges.
arXiv Detail & Related papers (2023-05-31T12:54:51Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - GIPSO: Geometrically Informed Propagation for Online Adaptation in 3D
LiDAR Segmentation [60.07812405063708]
3D point cloud semantic segmentation is fundamental for autonomous driving.
Most approaches in the literature neglect an important aspect, i.e., how to deal with domain shift when handling dynamic scenes.
This paper advances the state of the art in this research field.
arXiv Detail & Related papers (2022-07-20T09:06:07Z) - What Can be Seen is What You Get: Structure Aware Point Cloud
Augmentation [0.966840768820136]
We present novel point cloud augmentation methods to artificially diversify a dataset.
Our sensor-centric methods keep the data structure consistent with the lidar sensor capabilities.
We show that our methods enable the use of very small datasets, saving annotation time, training time and the associated costs.
arXiv Detail & Related papers (2022-06-20T09:10:59Z) - DeepSatData: Building large scale datasets of satellite images for
training machine learning models [77.17638664503215]
This report presents design considerations for automatically generating satellite imagery datasets for training machine learning models.
We discuss issues faced from the point of view of deep neural network training and evaluation.
arXiv Detail & Related papers (2021-04-28T15:13:12Z) - Improving Deep Stereo Network Generalization with Geometric Priors [93.09496073476275]
Large datasets of diverse real-world scenes with dense ground truth are difficult to obtain.
Many algorithms rely on small real-world datasets of similar scenes or synthetic datasets.
We propose to incorporate prior knowledge of scene geometry into an end-to-end stereo network to help networks generalize better.
arXiv Detail & Related papers (2020-08-25T15:24:02Z) - Dataset Condensation with Gradient Matching [36.14340188365505]
We propose a training set synthesis technique for data-efficient learning, called dataset Condensation, that learns to condense large dataset into a small set of informative synthetic samples for training deep neural networks from scratch.
We rigorously evaluate its performance in several computer vision benchmarks and demonstrate that it significantly outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2020-06-10T16:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.