Pensieve: Retrospect-then-Compare Mitigates Visual Hallucination
- URL: http://arxiv.org/abs/2403.14401v2
- Date: Sun, 1 Sep 2024 07:45:02 GMT
- Title: Pensieve: Retrospect-then-Compare Mitigates Visual Hallucination
- Authors: Dingchen Yang, Bowen Cao, Guang Chen, Changjun Jiang,
- Abstract summary: We propose Pensieve, a training-free method that leverages the analogous visual hallucinations, which are induced by images sharing common semantic and appearance characteristics.
Pensieve mitigates the effects of addressing errors from both the visual and textual branches by adaptively scaling the subtracted scores.
- Score: 14.25488878224697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal Large Language Models (MLLMs) demonstrate remarkable success across various vision-language tasks. However, they suffer from visual hallucination, where the generated responses diverge from the provided image. Are MLLMs oblivious to the accurate visual cues when they hallucinate? Our investigation reveals that the visual branch may equally advocate both accurate and erroneous content. To address this issue, we propose Pensieve, a training-free method that leverages the analogous visual hallucinations, which are induced by images sharing common semantic and appearance characteristics, to mitigate hallucination. Specifically, Pensieve enables MLLMs to retrospect relevant images as references and compare their visual content with the test image via confidence score subtraction. Moreover, our paradigm balances the effects of addressing errors from both the visual and textual branches by adaptively scaling the subtracted scores. Experiments on Whoops, LLaVA Bench, POPE, and MME demonstrate the efficacy of Pensieve in mitigating visual hallucination, surpassing other advanced decoding strategies. Pensieve also aids MLLMs in identifying visual details and enhance the specificity of generated image descriptions.
Related papers
- HELPD: Mitigating Hallucination of LVLMs by Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding [36.360171373963716]
Large Vision-Language Models (LVLMs) have shown remarkable performance on many visual-language tasks.
These models still suffer from multimodal hallucination, which means the generation of objects or content that violates the images.
We propose Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding (HELPD) to address this issue.
arXiv Detail & Related papers (2024-09-30T15:52:05Z) - Interpreting and Mitigating Hallucination in MLLMs through Multi-agent Debate [34.17353224636788]
We argue that hallucination in MLLMs is partially due to a lack of slow-thinking and divergent-thinking in these models.
Our approach can not only hallucinations but also interpret why they occur and detail the specifics of hallucination.
arXiv Detail & Related papers (2024-07-30T02:41:32Z) - Visual Description Grounding Reduces Hallucinations and Boosts Reasoning in LVLMs [52.497823009176074]
Large Vision-Language Models (LVLMs) often produce responses that misalign with factual information, a phenomenon known as hallucinations.
We introduce Visual Description Grounded Decoding (VDGD), a training-free method designed to enhance visual perception and improve reasoning capabilities in LVLMs.
arXiv Detail & Related papers (2024-05-24T16:21:59Z) - A Survey on Hallucination in Large Vision-Language Models [18.540878498840435]
Large Vision-Language Models (LVLMs) have attracted growing attention within the AI landscape for its practical implementation potential.
However, hallucination'', or more specifically, the misalignment between factual visual content and corresponding textual generation, poses a significant challenge of utilizing LVLMs.
We dissect LVLM-related hallucinations in an attempt to establish an overview and facilitate future mitigation.
arXiv Detail & Related papers (2024-02-01T00:33:21Z) - Hallucination Augmented Contrastive Learning for Multimodal Large
Language Model [53.65682783591723]
Multi-modal large language models (MLLMs) have been shown to efficiently integrate natural language with visual information to handle multi-modal tasks.
However, MLLMs still face a fundamental limitation of hallucinations, where they tend to generate erroneous or fabricated information.
In this paper, we address hallucinations in MLLMs from a novel perspective of representation learning.
arXiv Detail & Related papers (2023-12-12T04:05:15Z) - Mitigating Object Hallucinations in Large Vision-Language Models through
Visual Contrastive Decoding [125.05295513481035]
We introduce Visual Contrastive Decoding (VCD), a simple and training-free method that contrasts output distributions derived from original and distorted visual inputs.
The proposed VCD effectively reduces the over-reliance on statistical bias and unimodal priors, two essential causes of object hallucinations.
Our experiments show that VCD, without either additional training or the usage of external tools, significantly mitigates the object hallucination issue across different LVLM families.
arXiv Detail & Related papers (2023-11-28T16:26:35Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
arXiv Detail & Related papers (2023-11-22T04:52:58Z) - Evaluating Object Hallucination in Large Vision-Language Models [122.40337582958453]
This work presents the first systematic study on object hallucination of large vision-language models (LVLMs)
We find that LVLMs tend to generate objects that are inconsistent with the target images in the descriptions.
We propose a polling-based query method called POPE to evaluate the object hallucination.
arXiv Detail & Related papers (2023-05-17T16:34:01Z) - Plausible May Not Be Faithful: Probing Object Hallucination in
Vision-Language Pre-training [66.0036211069513]
Large-scale vision-language pre-trained models are prone to hallucinate non-existent visual objects when generating text.
We show that models achieving better scores on standard metrics could hallucinate objects more frequently.
Surprisingly, we find that patch-based features perform the best and smaller patch resolution yields a non-trivial reduction in object hallucination.
arXiv Detail & Related papers (2022-10-14T10:27:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.