A Chain-of-Thought Prompting Approach with LLMs for Evaluating Students' Formative Assessment Responses in Science
- URL: http://arxiv.org/abs/2403.14565v1
- Date: Thu, 21 Mar 2024 17:09:08 GMT
- Title: A Chain-of-Thought Prompting Approach with LLMs for Evaluating Students' Formative Assessment Responses in Science
- Authors: Clayton Cohn, Nicole Hutchins, Tuan Le, Gautam Biswas,
- Abstract summary: Our study focuses on employing GPT-4 for automated assessment in middle school Earth Science.
A systematic analysis of our method's pros and cons sheds light on the potential for human-in-the-loop techniques to enhance automated grading.
- Score: 3.124884279860061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the use of large language models (LLMs) to score and explain short-answer assessments in K-12 science. While existing methods can score more structured math and computer science assessments, they often do not provide explanations for the scores. Our study focuses on employing GPT-4 for automated assessment in middle school Earth Science, combining few-shot and active learning with chain-of-thought reasoning. Using a human-in-the-loop approach, we successfully score and provide meaningful explanations for formative assessment responses. A systematic analysis of our method's pros and cons sheds light on the potential for human-in-the-loop techniques to enhance automated grading for open-ended science assessments.
Related papers
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.
In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.
This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - Automated Feedback in Math Education: A Comparative Analysis of LLMs for Open-Ended Responses [0.0]
This study aims to explore the potential of Large Language Models (LLMs) in facilitating automated feedback in math education.
We employ Mistral, a version of Llama catered to math, and fine-tune this model for evaluating student responses by leveraging a dataset of student responses and teacher-written feedback for middle-school math problems.
We evaluate the model's performance in scoring accuracy and the quality of feedback by utilizing judgments from 2 teachers.
arXiv Detail & Related papers (2024-10-29T16:57:45Z) - An Automatic and Cost-Efficient Peer-Review Framework for Language Generation Evaluation [29.81362106367831]
Existing evaluation methods often suffer from high costs, limited test formats, the need of human references, and systematic evaluation biases.
In contrast to previous studies that rely on human annotations, Auto-PRE selects evaluators automatically based on their inherent traits.
Experimental results indicate our Auto-PRE achieves state-of-the-art performance at a lower cost.
arXiv Detail & Related papers (2024-10-16T06:06:06Z) - AI and Machine Learning for Next Generation Science Assessments [0.7416846035207727]
This chapter focuses on the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in science assessments.
The paper begins with a discussion of the Framework for K-12 Science Education, which calls for a shift from conceptual learning to knowledge-in-use.
The paper achieves three major goals: reviewing the current state of ML-based assessments in science education, introducing a framework for scoring accuracy in ML-based automatic assessments, and discussing future directions and challenges.
arXiv Detail & Related papers (2024-04-23T01:39:20Z) - Automated Assessment of Encouragement and Warmth in Classrooms Leveraging Multimodal Emotional Features and ChatGPT [7.273857543125784]
Our work explores a multimodal approach to automatically estimating encouragement and warmth in classrooms.
We employed facial and speech emotion recognition with sentiment analysis to extract interpretable features from video, audio, and transcript data.
We demonstrated our approach on the GTI dataset, comprising 367 16-minute video segments from 92 authentic lesson recordings.
arXiv Detail & Related papers (2024-04-01T16:58:09Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
We use Language Models (LMs) as educational experts to assess the impact of various instructions on learning outcomes.
We introduce an instruction optimization approach in which one LM generates instructional materials using the judgments of another LM as a reward function.
Human teachers' evaluations of these LM-generated worksheets show a significant alignment between the LM judgments and human teacher preferences.
arXiv Detail & Related papers (2024-03-05T09:09:15Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
This paper proposes several article-level, field-normalized, and large language model-empowered bibliometric indicators to evaluate reviews.
The newly emerging AI-generated literature reviews are also appraised.
This work offers insights into the current challenges of literature reviews and envisions future directions for their development.
arXiv Detail & Related papers (2024-02-20T11:28:50Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Little Giants: Exploring the Potential of Small LLMs as Evaluation
Metrics in Summarization in the Eval4NLP 2023 Shared Task [53.163534619649866]
This paper focuses on assessing the effectiveness of prompt-based techniques to empower Large Language Models to handle the task of quality estimation.
We conducted systematic experiments with various prompting techniques, including standard prompting, prompts informed by annotator instructions, and innovative chain-of-thought prompting.
Our work reveals that combining these approaches using a "small", open source model (orca_mini_v3_7B) yields competitive results.
arXiv Detail & Related papers (2023-11-01T17:44:35Z) - Comparative Analysis of GPT-4 and Human Graders in Evaluating Praise
Given to Students in Synthetic Dialogues [2.3361634876233817]
Large language models, such as the AI-chatbot ChatGPT, hold potential for offering constructive feedback to tutors in practical settings.
The accuracy of AI-generated feedback remains uncertain, with scant research investigating the ability of models like ChatGPT to deliver effective feedback.
arXiv Detail & Related papers (2023-07-05T04:14:01Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
We propose a new framework named ENIGMA for estimating human evaluation scores based on off-policy evaluation in reinforcement learning.
ENIGMA only requires a handful of pre-collected experience data, and therefore does not involve human interaction with the target policy during the evaluation.
Our experiments show that ENIGMA significantly outperforms existing methods in terms of correlation with human evaluation scores.
arXiv Detail & Related papers (2021-02-20T03:29:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.