GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation
- URL: http://arxiv.org/abs/2403.14621v1
- Date: Thu, 21 Mar 2024 17:59:34 GMT
- Title: GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation
- Authors: Yinghao Xu, Zifan Shi, Wang Yifan, Hansheng Chen, Ceyuan Yang, Sida Peng, Yujun Shen, Gordon Wetzstein,
- Abstract summary: We introduce GRM, a large-scale reconstructor capable of recovering a 3D asset from sparse-view images in around 0.1s.
GRM is a feed-forward transformer-based model that efficiently incorporates multi-view information.
We also showcase the potential of GRM in generative tasks, i.e., text-to-3D and image-to-3D, by integrating it with existing multi-view diffusion models.
- Score: 85.15374487533643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce GRM, a large-scale reconstructor capable of recovering a 3D asset from sparse-view images in around 0.1s. GRM is a feed-forward transformer-based model that efficiently incorporates multi-view information to translate the input pixels into pixel-aligned Gaussians, which are unprojected to create a set of densely distributed 3D Gaussians representing a scene. Together, our transformer architecture and the use of 3D Gaussians unlock a scalable and efficient reconstruction framework. Extensive experimental results demonstrate the superiority of our method over alternatives regarding both reconstruction quality and efficiency. We also showcase the potential of GRM in generative tasks, i.e., text-to-3D and image-to-3D, by integrating it with existing multi-view diffusion models. Our project website is at: https://justimyhxu.github.io/projects/grm/.
Related papers
- NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model [57.92709692193132]
NovelGS is a diffusion model for Gaussian Splatting given sparse-view images.
We leverage the novel view denoising through a transformer-based network to generate 3D Gaussians.
arXiv Detail & Related papers (2024-11-25T07:57:17Z) - UniG: Modelling Unitary 3D Gaussians for View-consistent 3D Reconstruction [20.089890859122168]
We present UniG, a view-consistent 3D reconstruction and novel view synthesis model.
UniG generates a high-fidelity representation of 3D Gaussians from sparse images.
arXiv Detail & Related papers (2024-10-17T03:48:02Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - MVGamba: Unify 3D Content Generation as State Space Sequence Modeling [150.80564081817786]
We introduce MVGamba, a general and lightweight Gaussian reconstruction model featuring a multi-view Gaussian reconstructor.
With off-the-detail multi-view diffusion models integrated, MVGamba unifies 3D generation tasks from a single image, sparse images, or text prompts.
Experiments demonstrate that MVGamba outperforms state-of-the-art baselines in all 3D content generation scenarios with approximately only $0.1times$ of the model size.
arXiv Detail & Related papers (2024-06-10T15:26:48Z) - GS-LRM: Large Reconstruction Model for 3D Gaussian Splatting [49.32327147931905]
We propose GS-LRM, a scalable large reconstruction model that can predict high-quality 3D Gaussians from 2-4 posed sparse images in 0.23 seconds on single A100 GPU.
Our model features a very simple transformer-based architecture; we patchify input posed images, pass the primitive multi-view image tokens through a sequence of transformer blocks, and decode final per-pixel Gaussian parameters directly from these tokens for differentiable rendering.
arXiv Detail & Related papers (2024-04-30T16:47:46Z) - Controllable Text-to-3D Generation via Surface-Aligned Gaussian Splatting [9.383423119196408]
We introduce Multi-view ControlNet (MVControl), a novel neural network architecture designed to enhance existing multi-view diffusion models.
MVControl is able to offer 3D diffusion guidance for optimization-based 3D generation.
In pursuit of efficiency, we adopt 3D Gaussians as our representation instead of the commonly used implicit representations.
arXiv Detail & Related papers (2024-03-15T02:57:20Z) - IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality
3D Generation [96.32684334038278]
In this paper, we explore the design space of text-to-3D models.
We significantly improve multi-view generation by considering video instead of image generators.
Our new method, IM-3D, reduces the number of evaluations of the 2D generator network 10-100x.
arXiv Detail & Related papers (2024-02-13T18:59:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.