Distributed Learning based on 1-Bit Gradient Coding in the Presence of Stragglers
- URL: http://arxiv.org/abs/2403.14716v1
- Date: Tue, 19 Mar 2024 06:48:40 GMT
- Title: Distributed Learning based on 1-Bit Gradient Coding in the Presence of Stragglers
- Authors: Chengxi Li, Mikael Skoglund,
- Abstract summary: We consider the problem of gradient learning in the presence of stragglers.
We propose a novel DL method based on 1-bit gradient coding (1bit GCDL)
- Score: 27.253728528979572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the problem of distributed learning (DL) in the presence of stragglers. For this problem, DL methods based on gradient coding have been widely investigated, which redundantly distribute the training data to the workers to guarantee convergence when some workers are stragglers. However, these methods require the workers to transmit real-valued vectors during the process of learning, which induces very high communication burden. To overcome this drawback, we propose a novel DL method based on 1-bit gradient coding (1-bit GCDL), where 1-bit data encoded from the locally computed gradients are transmitted by the workers to reduce the communication overhead. We theoretically provide the convergence guarantees of the proposed method for both the convex loss functions and nonconvex loss functions. It is shown empirically that 1-bit GC-DL outperforms the baseline methods, which attains better learning performance under the same communication overhead.
Related papers
- Gradient Coding in Decentralized Learning for Evading Stragglers [27.253728528979572]
We propose a new gossip-based decentralized learning method with gradient coding (GOCO)
To avoid the negative impact of stragglers, the parameter vectors are updated locally using encoded gradients based on the framework of gradient coding.
We analyze the convergence performance of GOCO for strongly convex loss functions.
arXiv Detail & Related papers (2024-02-06T17:49:02Z) - Clip21: Error Feedback for Gradient Clipping [8.979288425347702]
We design Clip21 -- the first provably effective and practically useful feedback mechanism for distributed methods.
Our method converges faster in practice than competing methods.
arXiv Detail & Related papers (2023-05-30T10:41:42Z) - Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification
in the Presence of Data Heterogeneity [60.791736094073]
Communication overhead has become one of the major bottlenecks in the distributed training of deep neural networks.
We propose a magnitude-driven sparsification scheme, which addresses the non-convergence issue of SIGNSGD.
The proposed scheme is validated through experiments on Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets.
arXiv Detail & Related papers (2023-02-19T17:42:35Z) - Boosting Offline Reinforcement Learning via Data Rebalancing [104.3767045977716]
offline reinforcement learning (RL) is challenged by the distributional shift between learning policies and datasets.
We propose a simple yet effective method to boost offline RL algorithms based on the observation that resampling a dataset keeps the distribution support unchanged.
We dub our method ReD (Return-based Data Rebalance), which can be implemented with less than 10 lines of code change and adds negligible running time.
arXiv Detail & Related papers (2022-10-17T16:34:01Z) - TCT: Convexifying Federated Learning using Bootstrapped Neural Tangent
Kernels [141.29156234353133]
State-of-the-art convex learning methods can perform far worse than their centralized counterparts when clients have dissimilar data distributions.
We show this disparity can largely be attributed to challenges presented by non-NISTity.
We propose a Train-Convexify neural network (TCT) procedure to sidestep this issue.
arXiv Detail & Related papers (2022-07-13T16:58:22Z) - KL Guided Domain Adaptation [88.19298405363452]
Domain adaptation is an important problem and often needed for real-world applications.
A common approach in the domain adaptation literature is to learn a representation of the input that has the same distributions over the source and the target domain.
We show that with a probabilistic representation network, the KL term can be estimated efficiently via minibatch samples.
arXiv Detail & Related papers (2021-06-14T22:24:23Z) - Distributed Sparse SGD with Majority Voting [5.32836690371986]
We introduce a majority voting based sparse communication strategy for distributed learning.
We show that it is possible to achieve up to x4000 compression without any loss in the test accuracy.
arXiv Detail & Related papers (2020-11-12T17:06:36Z) - A Distributed Training Algorithm of Generative Adversarial Networks with
Quantized Gradients [8.202072658184166]
We propose a distributed GANs training algorithm with quantized gradient, dubbed DQGAN, which is the first distributed training method with quantized gradient for GANs.
The new method trains GANs based on a specific single machine algorithm called Optimistic Mirror Descent (OMD) algorithm, and is applicable to any gradient compression method that satisfies a general $delta$-approximate compressor.
Theoretically, we establish the non-asymptotic convergence of DQGAN algorithm to first-order stationary point, which shows that the proposed algorithm can achieve a linear speedup in the
arXiv Detail & Related papers (2020-10-26T06:06:43Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - Sparse Communication for Training Deep Networks [56.441077560085475]
Synchronous gradient descent (SGD) is the most common method used for distributed training of deep learning models.
In this algorithm, each worker shares its local gradients with others and updates the parameters using the average gradients of all workers.
We study several compression schemes and identify how three key parameters affect the performance.
arXiv Detail & Related papers (2020-09-19T17:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.