STAG4D: Spatial-Temporal Anchored Generative 4D Gaussians
- URL: http://arxiv.org/abs/2403.14939v1
- Date: Fri, 22 Mar 2024 04:16:33 GMT
- Title: STAG4D: Spatial-Temporal Anchored Generative 4D Gaussians
- Authors: Yifei Zeng, Yanqin Jiang, Siyu Zhu, Yuanxun Lu, Youtian Lin, Hao Zhu, Weiming Hu, Xun Cao, Yao Yao,
- Abstract summary: STAG4D is a novel framework that combines pre-trained diffusion models with dynamic 3D Gaussian splatting for high-fidelity 4D generation.
We show that our method outperforms prior 4D generation works in rendering quality, spatial-temporal consistency, and generation robustness.
- Score: 36.83603109001298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in pre-trained diffusion models and 3D generation have spurred interest in 4D content creation. However, achieving high-fidelity 4D generation with spatial-temporal consistency remains a challenge. In this work, we propose STAG4D, a novel framework that combines pre-trained diffusion models with dynamic 3D Gaussian splatting for high-fidelity 4D generation. Drawing inspiration from 3D generation techniques, we utilize a multi-view diffusion model to initialize multi-view images anchoring on the input video frames, where the video can be either real-world captured or generated by a video diffusion model. To ensure the temporal consistency of the multi-view sequence initialization, we introduce a simple yet effective fusion strategy to leverage the first frame as a temporal anchor in the self-attention computation. With the almost consistent multi-view sequences, we then apply the score distillation sampling to optimize the 4D Gaussian point cloud. The 4D Gaussian spatting is specially crafted for the generation task, where an adaptive densification strategy is proposed to mitigate the unstable Gaussian gradient for robust optimization. Notably, the proposed pipeline does not require any pre-training or fine-tuning of diffusion networks, offering a more accessible and practical solution for the 4D generation task. Extensive experiments demonstrate that our method outperforms prior 4D generation works in rendering quality, spatial-temporal consistency, and generation robustness, setting a new state-of-the-art for 4D generation from diverse inputs, including text, image, and video.
Related papers
- 4Diffusion: Multi-view Video Diffusion Model for 4D Generation [55.82208863521353]
Current 4D generation methods have achieved noteworthy efficacy with the aid of advanced diffusion generative models.
We propose a novel 4D generation pipeline, namely 4Diffusion, aimed at generating spatial-temporally consistent 4D content from a monocular video.
arXiv Detail & Related papers (2024-05-31T08:18:39Z) - EG4D: Explicit Generation of 4D Object without Score Distillation [105.63506584772331]
DG4D is a novel framework that generates high-quality and consistent 4D assets without score distillation.
Our framework outperforms the baselines in generation quality by a considerable margin.
arXiv Detail & Related papers (2024-05-28T12:47:22Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
We present a novel framework, textbfDiffusion4D, for efficient and scalable 4D content generation.
We develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets.
Our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency.
arXiv Detail & Related papers (2024-05-26T17:47:34Z) - Diffusion$^2$: Dynamic 3D Content Generation via Score Composition of Video and Multi-view Diffusion Models [6.738732514502613]
Diffusion$2$ is a novel framework for dynamic 3D content creation.
It reconciles the knowledge about geometric consistency and temporal smoothness from 3D models to directly sample dense multi-view images.
Experiments demonstrate the efficacy of our proposed framework in generating highly seamless and consistent 4D assets.
arXiv Detail & Related papers (2024-04-02T17:58:03Z) - 4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency [118.15258850780417]
This work introduces 4DGen, a novel framework for grounded 4D content creation.
We identify static 3D assets and monocular video sequences as key components in constructing the 4D content.
Our pipeline facilitates conditional 4D generation, enabling users to specify geometry (3D assets) and motion (monocular videos)
arXiv Detail & Related papers (2023-12-28T18:53:39Z) - DreamGaussian4D: Generative 4D Gaussian Splatting [56.49043443452339]
We introduce DreamGaussian4D (DG4D), an efficient 4D generation framework that builds on Gaussian Splatting (GS)
Our key insight is that combining explicit modeling of spatial transformations with static GS makes an efficient and powerful representation for 4D generation.
Video generation methods have the potential to offer valuable spatial-temporal priors, enhancing the high-quality 4D generation.
arXiv Detail & Related papers (2023-12-28T17:16:44Z) - Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed
Diffusion Models [94.07744207257653]
We focus on the underexplored text-to-4D setting and synthesize dynamic, animated 3D objects.
We combine text-to-image, text-to-video, and 3D-aware multiview diffusion models to provide feedback during 4D object optimization.
arXiv Detail & Related papers (2023-12-21T11:41:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.