Generative Active Learning for Image Synthesis Personalization
- URL: http://arxiv.org/abs/2403.14987v2
- Date: Tue, 16 Apr 2024 04:15:32 GMT
- Title: Generative Active Learning for Image Synthesis Personalization
- Authors: Xulu Zhang, Wengyu Zhang, Xiao-Yong Wei, Jinlin Wu, Zhaoxiang Zhang, Zhen Lei, Qing Li,
- Abstract summary: This paper explores the application of active learning, traditionally studied in the context of discriminative models, to generative models.
The primary challenge in conducting active learning on generative models lies in the open-ended nature of querying.
We introduce the concept of anchor directions to transform the querying process into a semi-open problem.
- Score: 57.01364199734464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a pilot study that explores the application of active learning, traditionally studied in the context of discriminative models, to generative models. We specifically focus on image synthesis personalization tasks. The primary challenge in conducting active learning on generative models lies in the open-ended nature of querying, which differs from the closed form of querying in discriminative models that typically target a single concept. We introduce the concept of anchor directions to transform the querying process into a semi-open problem. We propose a direction-based uncertainty sampling strategy to enable generative active learning and tackle the exploitation-exploration dilemma. Extensive experiments are conducted to validate the effectiveness of our approach, demonstrating that an open-source model can achieve superior performance compared to closed-source models developed by large companies, such as Google's StyleDrop. The source code is available at https://github.com/zhangxulu1996/GAL4Personalization.
Related papers
- Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
In recent years, the robot learning community has shown increasing interest in using deep generative models to capture the complexity of large datasets.
We present the different types of models that the community has explored, such as energy-based models, diffusion models, action value maps, or generative adversarial networks.
We also present the different types of applications in which deep generative models have been used, from grasp generation to trajectory generation or cost learning.
arXiv Detail & Related papers (2024-08-08T11:34:31Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
We propose a simple yet effective framework comprising a pre-trained Stable Diffusion (SD) model containing rich generative priors, a unified head (U-head) capable of integrating hierarchical representations, and an adapted expert providing discriminative priors.
Comprehensive investigations unveil potential characteristics of Vermouth, such as varying granularity of perception concealed in latent variables at distinct time steps and various U-net stages.
The promising results demonstrate the potential of diffusion models as formidable learners, establishing their significance in furnishing informative and robust visual representations.
arXiv Detail & Related papers (2024-01-29T10:36:57Z) - Generative Model-based Feature Knowledge Distillation for Action
Recognition [11.31068233536815]
Our paper introduces an innovative knowledge distillation framework, with the generative model for training a lightweight student model.
The efficacy of our approach is demonstrated through comprehensive experiments on diverse popular datasets.
arXiv Detail & Related papers (2023-12-14T03:55:29Z) - LMC: Large Model Collaboration with Cross-assessment for Training-Free
Open-Set Object Recognition [13.703679771847506]
We propose a novel framework named Large Model Collaboration (LMC) to tackle the challenge via collaborating different off-the-shelf large models in a training-free manner.
We also incorporate the proposed framework with several novel designs to effectively extract implicit knowledge from large models.
arXiv Detail & Related papers (2023-09-22T10:43:55Z) - Introducing Foundation Models as Surrogate Models: Advancing Towards
More Practical Adversarial Attacks [15.882687207499373]
No-box adversarial attacks are becoming more practical and challenging for AI systems.
This paper recasts adversarial attack as a downstream task by introducing foundational models as surrogate models.
arXiv Detail & Related papers (2023-07-13T08:10:48Z) - Class-Incremental Mixture of Gaussians for Deep Continual Learning [15.49323098362628]
We propose end-to-end incorporation of the mixture of Gaussians model into the continual learning framework.
We show that our model can effectively learn in memory-free scenarios with fixed extractors.
arXiv Detail & Related papers (2023-07-09T04:33:19Z) - A Curriculum-style Self-training Approach for Source-Free Semantic Segmentation [91.13472029666312]
We propose a curriculum-style self-training approach for source-free domain adaptive semantic segmentation.
Our method yields state-of-the-art performance on source-free semantic segmentation tasks for both synthetic-to-real and adverse conditions.
arXiv Detail & Related papers (2021-06-22T10:21:39Z) - Which Model to Transfer? Finding the Needle in the Growing Haystack [27.660318887140203]
We provide a formalization of this problem through a familiar notion of regret.
We show that both task-agnostic and task-aware methods can yield high regret.
We then propose a simple and efficient hybrid search strategy which outperforms the existing approaches.
arXiv Detail & Related papers (2020-10-13T14:00:22Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.