LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement
- URL: http://arxiv.org/abs/2403.15042v2
- Date: Sat, 13 Jul 2024 07:36:49 GMT
- Title: LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement
- Authors: Nicholas Lee, Thanakul Wattanawong, Sehoon Kim, Karttikeya Mangalam, Sheng Shen, Gopala Anumanchipalli, Michael W. Mahoney, Kurt Keutzer, Amir Gholami,
- Abstract summary: Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks.
We propose LLM2LLM, a data augmentation strategy that uses a teacher LLM to enhance a small seed dataset.
We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime.
- Score: 79.31084387589968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks. While many real-world applications still require fine-tuning to reach satisfactory levels of performance, many of them are in the low-data regime, making fine-tuning challenging. To address this, we propose LLM2LLM, a targeted and iterative data augmentation strategy that uses a teacher LLM to enhance a small seed dataset by augmenting additional data that can be used for fine-tuning on a specific task. LLM2LLM (1) fine-tunes a baseline student LLM on the initial seed data, (2) evaluates and extracts data points that the model gets wrong, and (3) uses a teacher LLM to generate synthetic data based on these incorrect data points, which are then added back into the training data. This approach amplifies the signal from incorrectly predicted data points by the LLM during training and reintegrates them into the dataset to focus on more challenging examples for the LLM. Our results show that LLM2LLM significantly enhances the performance of LLMs in the low-data regime, outperforming both traditional fine-tuning and other data augmentation baselines. LLM2LLM reduces the dependence on labor-intensive data curation and paves the way for more scalable and performant LLM solutions, allowing us to tackle data-constrained domains and tasks. We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime using a Llama-2-7B student model. Our code is available at https://github.com/SqueezeAILab/LLM2LLM .
Related papers
- Enhancing Discriminative Tasks by Guiding the Pre-trained Language Model with Large Language Model's Experience [4.814313782484443]
Large Language Models (LLMs) and pre-trained Language Models (LMs) have achieved impressive success on many software engineering tasks.
We use LLMs to generate domain-specific data, thereby improving the performance of pre-trained LMs on the target tasks.
arXiv Detail & Related papers (2024-08-16T06:37:59Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Regurgitative Training: The Value of Real Data in Training Large Language Models [1.2815904071470703]
We evaluate the implications of "regurgitative training" on LLM performance.
We find strong evidence that regurgitative training clearly handicaps the performance of LLMs.
We propose and evaluate three different strategies to mitigate the performance loss of regurgitative training.
arXiv Detail & Related papers (2024-07-03T18:42:55Z) - Automated Data Curation for Robust Language Model Fine-Tuning [13.8454385440986]
We introduce an automated data curation pipeline CLEAR for instruction tuning datasets.
CLEAR estimates which training data is low-quality and either filters or corrects it.
Experiments reveal that CLEAR consistently improves the performance of fine-tuned models across many datasets and models.
arXiv Detail & Related papers (2024-03-19T14:44:45Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
We introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime.
We demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators.
arXiv Detail & Related papers (2023-12-19T12:34:46Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
We introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach to fine-tune large language models (LLMs)
Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs.
Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs.
arXiv Detail & Related papers (2023-10-13T07:38:52Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.