Continual Vision-and-Language Navigation
- URL: http://arxiv.org/abs/2403.15049v2
- Date: Sat, 21 Dec 2024 09:05:50 GMT
- Title: Continual Vision-and-Language Navigation
- Authors: Seongjun Jeong, Gi-Cheon Kang, Seongho Choi, Joochan Kim, Byoung-Tak Zhang,
- Abstract summary: Vision-and-Language Navigation (VLN) agents navigate to a destination using natural language instructions and visual cues.
We propose Continual Vision-and-Language Navigation (CVLN) paradigm for agents to continually learn and adapt to changing environments.
- Score: 18.20829279972436
- License:
- Abstract: In developing Vision-and-Language Navigation (VLN) agents that navigate to a destination using natural language instructions and visual cues, current studies largely assume a \textit{train-once-deploy-once strategy}. We argue that this kind of strategy is less realistic, as deployed VLN agents are expected to encounter novel environments continuously through their lifetime. To facilitate more realistic setting for VLN agents, we propose Continual Vision-and-Language Navigation (CVLN) paradigm for agents to continually learn and adapt to changing environments. In CVLN, the agents are trained and evaluated incrementally across multiple \textit{scene domains} (i.e., environments). We present two CVLN learning setups to consider diverse forms of natural language instructions: Initial-instruction based CVLN, focused on navigation via initial-instruction interpretation, and dialogue-based CVLN, designed for navigation through dialogue with other agents. We introduce two simple yet effective baseline methods, tailored to the sequential decision-making needs of CVLN: Perplexity Replay (PerpR) and Episodic Self-Replay (ESR), both employing a rehearsal mechanism. PerpR selects replay episodes based on episode difficulty, while ESR stores and revisits action logits from individual episode steps during training to refine learning. Experimental results indicate that while existing continual learning methods are insufficient for CVLN, PerpR and ESR outperform the comparison methods by effectively utilizing replay memory.
Related papers
- Vision-Language Navigation with Continual Learning [10.850410419782424]
Vision-language navigation (VLN) is a critical domain within embedded intelligence.
We propose the Vision-Language Navigation with Continual Learning paradigm to address this challenge.
In this paradigm, agents incrementally learn new environments while retaining previously acquired knowledge.
arXiv Detail & Related papers (2024-09-04T09:28:48Z) - NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning
Disentangled Reasoning [101.56342075720588]
Vision-and-Language Navigation (VLN), as a crucial research problem of Embodied AI, requires an embodied agent to navigate through complex 3D environments following natural language instructions.
Recent research has highlighted the promising capacity of large language models (LLMs) in VLN by improving navigational reasoning accuracy and interpretability.
This paper introduces a novel strategy called Navigational Chain-of-Thought (NavCoT), where we fulfill parameter-efficient in-domain training to enable self-guided navigational decision.
arXiv Detail & Related papers (2024-03-12T07:27:02Z) - Vision-Language Models Provide Promptable Representations for Reinforcement Learning [67.40524195671479]
We propose a novel approach that uses the vast amounts of general and indexable world knowledge encoded in vision-language models (VLMs) pre-trained on Internet-scale data for embodied reinforcement learning (RL)
We show that our approach can use chain-of-thought prompting to produce representations of common-sense semantic reasoning, improving policy performance in novel scenes by 1.5 times.
arXiv Detail & Related papers (2024-02-05T00:48:56Z) - Prompt-based Context- and Domain-aware Pretraining for Vision and
Language Navigation [19.793659852435486]
We propose a novel Prompt-bAsed coNtext- and inDoor-Aware (PANDA) pretraining framework to address these problems.
In the indoor-aware stage, we apply an efficient tuning paradigm to learn deep visual prompts from an indoor dataset.
In the context-aware stage, we design a set of hard context prompts to capture the sequence-level semantics in the instruction.
arXiv Detail & Related papers (2023-09-07T11:58:34Z) - Anticipating the Unseen Discrepancy for Vision and Language Navigation [63.399180481818405]
Vision-Language Navigation requires the agent to follow natural language instructions to reach a specific target.
The large discrepancy between seen and unseen environments makes it challenging for the agent to generalize well.
We propose Unseen Discrepancy Anticipating Vision and Language Navigation (DAVIS) that learns to generalize to unseen environments via encouraging test-time visual consistency.
arXiv Detail & Related papers (2022-09-10T19:04:40Z) - Contrastive Instruction-Trajectory Learning for Vision-Language
Navigation [66.16980504844233]
A vision-language navigation (VLN) task requires an agent to reach a target with the guidance of natural language instruction.
Previous works fail to discriminate the similarities and discrepancies across instruction-trajectory pairs and ignore the temporal continuity of sub-instructions.
We propose a Contrastive Instruction-Trajectory Learning framework that explores invariance across similar data samples and variance across different ones to learn distinctive representations for robust navigation.
arXiv Detail & Related papers (2021-12-08T06:32:52Z) - SASRA: Semantically-aware Spatio-temporal Reasoning Agent for
Vision-and-Language Navigation in Continuous Environments [7.5606260987453116]
This paper presents a novel approach for the Vision-and-Language Navigation (VLN) task in continuous 3D environments.
Existing end-to-end learning-based methods struggle at this task as they focus mostly on raw visual observations.
We present a hybrid transformer-recurrence model which focuses on combining classical semantic mapping techniques with a learning-based method.
arXiv Detail & Related papers (2021-08-26T17:57:02Z) - Airbert: In-domain Pretraining for Vision-and-Language Navigation [91.03849833486974]
Vision-and-language navigation (VLN) aims to enable embodied agents to navigate in realistic environments using natural language instructions.
Recent methods explore pretraining to improve generalization of VLN agents.
We introduce BnB, a large-scale and diverse in-domain VLN dataset.
arXiv Detail & Related papers (2021-08-20T10:58:09Z) - Language-guided Navigation via Cross-Modal Grounding and Alternate
Adversarial Learning [66.9937776799536]
The emerging vision-and-language navigation (VLN) problem aims at learning to navigate an agent to the target location in unseen photo-realistic environments.
The main challenges of VLN arise mainly from two aspects: first, the agent needs to attend to the meaningful paragraphs of the language instruction corresponding to the dynamically-varying visual environments.
We propose a cross-modal grounding module to equip the agent with a better ability to track the correspondence between the textual and visual modalities.
arXiv Detail & Related papers (2020-11-22T09:13:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.