Subjective Quality Assessment of Compressed Tone-Mapped High Dynamic Range Videos
- URL: http://arxiv.org/abs/2403.15061v1
- Date: Fri, 22 Mar 2024 09:38:16 GMT
- Title: Subjective Quality Assessment of Compressed Tone-Mapped High Dynamic Range Videos
- Authors: Abhinau K. Venkataramanan, Alan C. Bovik,
- Abstract summary: We analyze the impact of tonemapping operators on the visual quality of streaming HDR videos.
We build the first large-scale subjectively open-source database of compressed tone-mapped HDR videos.
- Score: 35.19716951217485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High Dynamic Range (HDR) videos are able to represent wider ranges of contrasts and colors than Standard Dynamic Range (SDR) videos, giving more vivid experiences. Due to this, HDR videos are expected to grow into the dominant video modality of the future. However, HDR videos are incompatible with existing SDR displays, which form the majority of affordable consumer displays on the market. Because of this, HDR videos must be processed by tone-mapping them to reduced bit-depths to service a broad swath of SDR-limited video consumers. Here, we analyze the impact of tone-mapping operators on the visual quality of streaming HDR videos. To this end, we built the first large-scale subjectively annotated open-source database of compressed tone-mapped HDR videos, containing 15,000 tone-mapped sequences derived from 40 unique HDR source contents. The videos in the database were labeled with more than 750,000 subjective quality annotations, collected from more than 1,600 unique human observers. We demonstrate the usefulness of the new subjective database by benchmarking objective models of visual quality on it. We envision that the new LIVE Tone-Mapped HDR (LIVE-TMHDR) database will enable significant progress on HDR video tone mapping and quality assessment in the future. To this end, we make the database freely available to the community at https://live.ece.utexas.edu/research/LIVE_TMHDR/index.html
Related papers
- HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting [76.5908492298286]
Existing HDR NVS methods are mainly based on NeRF.
They suffer from long training time and slow inference speed.
We propose a new framework, High Dynamic Range Gaussian Splatting (-GS)
arXiv Detail & Related papers (2024-05-24T00:46:58Z) - Cut-FUNQUE: An Objective Quality Model for Compressed Tone-Mapped High Dynamic Range Videos [30.939589712281684]
We develop a novel model of objective video quality named Cut-FUNQUE that is able to accurately predict the visual quality of tone-mapped and compressed HDR videos.
We evaluate Cut-FUNQUE on a large-scale crowdsourced database of such videos and show that it achieves state-of-the-art accuracy.
arXiv Detail & Related papers (2024-04-20T19:29:51Z) - HIDRO-VQA: High Dynamic Range Oracle for Video Quality Assessment [36.1179702443845]
We introduce HIDRO-VQA, a no-reference (NR) video quality assessment model designed to provide precise quality evaluations of High Dynamic Range () videos.
Our findings demonstrate that self-supervised pre-trained neural networks can be further fine-tuned in a self-supervised setting to achieve state-of-the-art performance.
Our algorithm can be extended to the Full Reference VQA setting, also achieving state-of-the-art performance.
arXiv Detail & Related papers (2023-11-18T12:33:19Z) - Towards Efficient SDRTV-to-HDRTV by Learning from Image Formation [51.26219245226384]
Modern displays are capable of rendering video content with high dynamic range (WCG) and wide color gamut (SDR)
The majority of available resources are still in standard dynamic range (SDR)
We define and analyze the SDRTV-to-TV task by modeling the formation of SDRTV/TV content.
Our method is primarily designed for ultra-high-definition TV content and is therefore effective and lightweight for processing 4K resolution images.
arXiv Detail & Related papers (2023-09-08T02:50:54Z) - HDR or SDR? A Subjective and Objective Study of Scaled and Compressed
Videos [36.33823452846196]
We conducted a large-scale study of human perceptual quality judgments of High Dynamic Range (SDR) and Standard Dynamic Range (SDR) videos.
We found subject preference of HDR versus SDR depends heavily on the display device, as well as on resolution scaling and resolution.
arXiv Detail & Related papers (2023-04-25T21:43:37Z) - Making Video Quality Assessment Models Robust to Bit Depth [38.504568225201915]
We introduce a novel feature set, which we call HDRMAX features, that when included into Video Quality Assessment (VQA) algorithms, sensitizes them to distortions of High Dynamic Range (SDR) videos.
While these features are not specific to HDR, and also augment the equality prediction performances of VQA models on SDR content, they are especially effective on HDR.
As a demonstration of the efficacy of our approach, we show that, while current state-of-the-art VQA models perform poorly on 10-bit HDR databases, their performances are greatly improved by the inclusion of HDRMAX features when tested on
arXiv Detail & Related papers (2023-04-25T18:54:28Z) - Subjective Assessment of High Dynamic Range Videos Under Different
Ambient Conditions [38.504568225201915]
We present the first publicly released large-scale subjective study of HDR videos.
We study the effect of distortions such as compression and aliasing on the quality of HDR videos.
A total of 66 subjects participated in the study and more than 20,000 opinion scores were collected.
arXiv Detail & Related papers (2022-09-20T21:25:50Z) - Beyond Visual Attractiveness: Physically Plausible Single Image HDR
Reconstruction for Spherical Panoramas [60.24132321381606]
We introduce the physical illuminance constraints to our single-shot HDR reconstruction framework.
Our method can generate HDRs which are not only visually appealing but also physically plausible.
arXiv Detail & Related papers (2021-03-24T01:51:19Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
We propose a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images.
By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content.
arXiv Detail & Related papers (2020-07-03T11:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.