Integrating multiscale topology in digital pathology with pyramidal graph convolutional networks
- URL: http://arxiv.org/abs/2403.15068v1
- Date: Fri, 22 Mar 2024 09:48:50 GMT
- Title: Integrating multiscale topology in digital pathology with pyramidal graph convolutional networks
- Authors: Victor IbaƱez, Przemyslaw Szostak, Quincy Wong, Konstanty Korski, Samaneh Abbasi-Sureshjani, Alvaro Gomariz,
- Abstract summary: Graph convolutional networks (GCNs) have emerged as a powerful alternative to multiple instance learning with convolutional neural networks in digital pathology.
Our proposed multi-scale GCN (MS-GCN) tackles this issue by leveraging information across multiple magnification levels in whole slide images.
MS-GCN demonstrates superior performance over existing single-magnification GCN methods.
- Score: 0.10995326465245926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph convolutional networks (GCNs) have emerged as a powerful alternative to multiple instance learning with convolutional neural networks in digital pathology, offering superior handling of structural information across various spatial ranges - a crucial aspect of learning from gigapixel H&E-stained whole slide images (WSI). However, graph message-passing algorithms often suffer from oversmoothing when aggregating a large neighborhood. Hence, effective modeling of multi-range interactions relies on the careful construction of the graph. Our proposed multi-scale GCN (MS-GCN) tackles this issue by leveraging information across multiple magnification levels in WSIs. MS-GCN enables the simultaneous modeling of long-range structural dependencies at lower magnifications and high-resolution cellular details at higher magnifications, akin to analysis pipelines usually conducted by pathologists. The architecture's unique configuration allows for the concurrent modeling of structural patterns at lower magnifications and detailed cellular features at higher ones, while also quantifying the contribution of each magnification level to the prediction. Through testing on different datasets, MS-GCN demonstrates superior performance over existing single-magnification GCN methods. The enhancement in performance and interpretability afforded by our method holds promise for advancing computational pathology models, especially in tasks requiring extensive spatial context.
Related papers
- GRASP: GRAph-Structured Pyramidal Whole Slide Image Representation [4.5869791542071]
We present GRASP, a graph-structured multi-magnification framework for processing whole slide images (WSIs) in digital pathology.
Our approach is designed to emulate the pathologist's behavior in handling WSIs and benefits from the hierarchical structure of WSIs.
GRASP, which introduces a convergence-based node aggregation instead of traditional pooling mechanisms, outperforms state-of-the-art methods over two distinct cancer datasets.
arXiv Detail & Related papers (2024-02-06T00:03:44Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
implicit graph neural networks (GNNs) have been proposed to capture long-range dependencies in underlying graphs.
We introduce and justify two weaknesses of implicit GNNs: the constrained expressiveness due to their limited effective range for capturing long-range dependencies, and their lack of ability to capture multiscale information on graphs at multiple resolutions.
We propose a multiscale graph neural network with implicit layers (MGNNI) which is able to model multiscale structures on graphs and has an expanded effective range for capturing long-range dependencies.
arXiv Detail & Related papers (2022-10-15T18:18:55Z) - Convolutional Learning on Multigraphs [153.20329791008095]
We develop convolutional information processing on multigraphs and introduce convolutional multigraph neural networks (MGNNs)
To capture the complex dynamics of information diffusion within and across each of the multigraph's classes of edges, we formalize a convolutional signal processing model.
We develop a multigraph learning architecture, including a sampling procedure to reduce computational complexity.
The introduced architecture is applied towards optimal wireless resource allocation and a hate speech localization task, offering improved performance over traditional graph neural networks.
arXiv Detail & Related papers (2022-09-23T00:33:04Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Neuroplastic graph attention networks for nuclei segmentation in
histopathology images [17.30043617044508]
We propose a novel architecture for semantic segmentation of cell nuclei.
The architecture is comprised of a novel neuroplastic graph attention network.
In experimental evaluation, our framework outperforms ensembles of state-of-the-art neural networks.
arXiv Detail & Related papers (2022-01-10T22:19:14Z) - A Multiscale Graph Convolutional Network for Change Detection in
Homogeneous and Heterogeneous Remote Sensing Images [12.823633963080281]
Change detection (CD) in remote sensing images has been an ever-expanding area of research.
In this paper, a novel CD method based on the graph convolutional network (GCN) and multiscale object-based technique is proposed for both homogeneous and heterogeneous images.
arXiv Detail & Related papers (2021-02-16T09:26:31Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.