On the Convergence of Adam under Non-uniform Smoothness: Separability from SGDM and Beyond
- URL: http://arxiv.org/abs/2403.15146v1
- Date: Fri, 22 Mar 2024 11:57:51 GMT
- Title: On the Convergence of Adam under Non-uniform Smoothness: Separability from SGDM and Beyond
- Authors: Bohan Wang, Huishuai Zhang, Qi Meng, Ruoyu Sun, Zhi-Ming Ma, Wei Chen,
- Abstract summary: We demonstrate that Adam achieves a faster convergence compared to SGDM under the condition of non-uniformly bounded smoothness.
Our findings reveal that: (1) in deterministic environments, Adam can attain the known lower bound for the convergence rate of deterministic first-orders, whereas the convergence rate of Gradient Descent with Momentum (GDM) has higher order dependence on the initial function value.
- Score: 35.65852208995095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to clearly distinguish between Stochastic Gradient Descent with Momentum (SGDM) and Adam in terms of their convergence rates. We demonstrate that Adam achieves a faster convergence compared to SGDM under the condition of non-uniformly bounded smoothness. Our findings reveal that: (1) in deterministic environments, Adam can attain the known lower bound for the convergence rate of deterministic first-order optimizers, whereas the convergence rate of Gradient Descent with Momentum (GDM) has higher order dependence on the initial function value; (2) in stochastic setting, Adam's convergence rate upper bound matches the lower bounds of stochastic first-order optimizers, considering both the initial function value and the final error, whereas there are instances where SGDM fails to converge with any learning rate. These insights distinctly differentiate Adam and SGDM regarding their convergence rates. Additionally, by introducing a novel stopping-time based technique, we further prove that if we consider the minimum gradient norm during iterations, the corresponding convergence rate can match the lower bounds across all problem hyperparameters. The technique can also help proving that Adam with a specific hyperparameter scheduler is parameter-agnostic, which hence can be of independent interest.
Related papers
- A Comprehensive Framework for Analyzing the Convergence of Adam: Bridging the Gap with SGD [28.905886549938305]
We introduce a novel and comprehensive framework for analyzing the convergence properties of Adam.
We show that Adam attains non-asymptotic complexity sample bounds similar to those of gradient descent.
arXiv Detail & Related papers (2024-10-06T12:15:00Z) - Convergence Guarantees for RMSProp and Adam in Generalized-smooth Non-convex Optimization with Affine Noise Variance [23.112775335244258]
We first analyze RMSProp, which is a special case of Adam with adaptive learning rates but without first-order momentum.
We develop a new upper bound first-order term in the descent lemma, which is also a function of the gradient norm.
Our results for both RMSProp and Adam match with the complexity established in citearvani2023lower.
arXiv Detail & Related papers (2024-04-01T19:17:45Z) - High Probability Convergence of Adam Under Unbounded Gradients and
Affine Variance Noise [4.9495085874952895]
We show that Adam could converge to the stationary point in high probability with a rate of $mathcalOleft(rm poly(log T)/sqrtTright)$ under coordinate-wise "affine" noise variance.
It is also revealed that Adam's confines within an order of $mathcalOleft(rm poly(left T)right)$ are adaptive to the noise level.
arXiv Detail & Related papers (2023-11-03T15:55:53Z) - Closing the Gap Between the Upper Bound and the Lower Bound of Adam's
Iteration Complexity [51.96093077151991]
We derive a new convergence guarantee of Adam, with only an $L$-smooth condition and a bounded noise variance assumption.
Our proof utilizes novel techniques to handle the entanglement between momentum and adaptive learning rate.
arXiv Detail & Related papers (2023-10-27T09:16:58Z) - Convergence of Adam for Non-convex Objectives: Relaxed Hyperparameters
and Non-ergodic Case [0.0]
This paper focuses on exploring the convergence of vanilla Adam and the challenges of non-ergodic convergence.
These findings build a solid theoretical foundation for Adam to solve non-godic optimization problems.
arXiv Detail & Related papers (2023-07-20T12:02:17Z) - Convergence of Adam Under Relaxed Assumptions [72.24779199744954]
We show that Adam converges to $epsilon$-stationary points with $O(epsilon-4)$ gradient complexity under far more realistic conditions.
We also propose a variance-reduced version of Adam with an accelerated gradient complexity of $O(epsilon-3)$.
arXiv Detail & Related papers (2023-04-27T06:27:37Z) - A Novel Convergence Analysis for Algorithms of the Adam Family [105.22760323075008]
We present a generic proof of convergence for a family of Adam-style methods including Adam, AMSGrad, Adabound, etc.
Our analysis is so simple and generic that it can be leveraged to establish the convergence for solving a broader family of non- compositional optimization problems.
arXiv Detail & Related papers (2021-12-07T02:47:58Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
We introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO.
We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size.
Our convergence guarantees hold under the arbitrary sampling paradigm, and we give insights into the complexity of minibatching.
arXiv Detail & Related papers (2021-06-30T18:32:46Z) - A Simple Convergence Proof of Adam and Adagrad [74.24716715922759]
We show a proof of convergence between the Adam Adagrad and $O(d(N)/st)$ algorithms.
Adam converges with the same convergence $O(d(N)/st)$ when used with the default parameters.
arXiv Detail & Related papers (2020-03-05T01:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.