Cross-user activity recognition via temporal relation optimal transport
- URL: http://arxiv.org/abs/2403.15423v1
- Date: Tue, 12 Mar 2024 22:33:56 GMT
- Title: Cross-user activity recognition via temporal relation optimal transport
- Authors: Xiaozhou Ye, Kevin I-Kai Wang,
- Abstract summary: Current research on human activity recognition (HAR) mainly assumes that training and testing data are drawn from the same distribution to achieve a generalised model.
We propose the temporal relation optimal transport (TROT) method to utilise temporal relation and relax the $displaystyle i.i.d. $ assumption.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current research on human activity recognition (HAR) mainly assumes that training and testing data are drawn from the same distribution to achieve a generalised model, which means all the data are considered to be independent and identically distributed $\displaystyle (i.i.d.) $. In many real-world applications, this assumption does not hold, and collected training and target testing datasets have non-uniform distribution, such as in the case of cross-user HAR. Domain adaptation is a promising approach for cross-user HAR tasks. Existing domain adaptation works based on the assumption that samples in each domain are $\displaystyle i.i.d. $ and do not consider the knowledge of temporal relation hidden in time series data for aligning data distribution. This strong assumption of $\displaystyle i.i.d. $ may not be suitable for time series-related domain adaptation methods because the samples formed by time series segmentation and feature extraction techniques are only coarse approximations to $\displaystyle i.i.d. $ assumption in each domain. In this paper, we propose the temporal relation optimal transport (TROT) method to utilise temporal relation and relax the $\displaystyle i.i.d. $ assumption for the samples in each domain for accurate and efficient knowledge transfer. We obtain the temporal relation representation and implement temporal relation alignment of activities via the Hidden Markov model (HMM) and optimal transport (OT) techniques. Besides, a new regularisation term that preserves temporal relation order information for an improved optimal transport mapping is proposed to enhance the domain adaptation performance. Comprehensive experiments are conducted on three public activity recognition datasets (i.e. OPPT, PAMAP2 and DSADS), demonstrating that TROT outperforms other state-of-the-art methods.
Related papers
- Evaluating Transfer Learning Methods on Real-World Data Streams: A Case Study in Financial Fraud Detection [4.689506737427387]
When the available data for a target domain is limited, transfer learning (TL) methods can be used to develop models on related data-rich domains.<n>We propose a data manipulation framework that simulates varying data availability scenarios over time.<n>We demonstrate the usefulness of the proposed framework by performing a case study on a proprietary real-world suite of card payment datasets.
arXiv Detail & Related papers (2025-07-29T14:12:21Z) - IT$^3$: Idempotent Test-Time Training [95.78053599609044]
Deep learning models often struggle when deployed in real-world settings due to distribution shifts between training and test data.<n>We present Idempotent Test-Time Training (IT$3$), a novel approach that enables on-the-fly adaptation to distribution shifts using only the current test instance.<n>Our results suggest that idempotence provides a universal principle for test-time adaptation that generalizes across domains and architectures.
arXiv Detail & Related papers (2024-10-05T15:39:51Z) - Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain.
This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation.
We present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead.
arXiv Detail & Related papers (2024-07-26T17:51:58Z) - Deep Generative Domain Adaptation with Temporal Relation Knowledge for Cross-User Activity Recognition [0.0]
In human activity recognition, the assumption that training and testing data are independent and identically distributed (i.i.d.) often fails.
Our study introduces a Variational Autoencoder with Universal Sequence Mapping (CVAE-USM) approach, which addresses the unique challenges of time-series domain adaptation in HAR.
This method combines the strengths of Variational Autoencoder (VAE) and Universal Sequence Mapping (USM) to capture and utilize common temporal patterns between users for improved activity recognition.
arXiv Detail & Related papers (2024-03-12T22:48:23Z) - Deep Generative Domain Adaptation with Temporal Attention for Cross-User Activity Recognition [0.0]
In Human Activity Recognition (HAR), a predominant assumption is that the data utilized for training and evaluation purposes are drawn from the same distribution.
This research presents the Deep Generative Domain Adaptation with Temporal Attention method.
By synergizing the capabilities of generative models with the Temporal Relation Attention mechanism, our method improves the classification performance in cross-user HAR.
arXiv Detail & Related papers (2024-03-12T22:45:05Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - Multi-Task Self-Supervised Time-Series Representation Learning [3.31490164885582]
Time-series representation learning can extract representations from data with temporal dynamics and sparse labels.
We propose a new time-series representation learning method by combining the advantages of self-supervised tasks.
We evaluate the proposed framework on three downstream tasks: time-series classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2023-03-02T07:44:06Z) - Improving Domain Generalization with Domain Relations [77.63345406973097]
This paper focuses on domain shifts, which occur when the model is applied to new domains that are different from the ones it was trained on.
We propose a new approach called D$3$G to learn domain-specific models.
Our results show that D$3$G consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-02-06T08:11:16Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Domain Generalization for Activity Recognition via Adaptive Feature
Fusion [9.458837222079612]
We propose emphAdaptive Feature Fusion for Activity Recognition(AFFAR).
AFFAR learns to fuse the domain-invariant and domain-specific representations to improve the model's generalization performance.
We apply AFAR to a real application, i.e., the diagnosis of Children's Attention Deficit Hyperactivity Disorder(ADHD)
arXiv Detail & Related papers (2022-07-21T02:14:09Z) - ADATIME: A Benchmarking Suite for Domain Adaptation on Time Series Data [20.34427953468868]
Unsupervised domain adaptation methods aim to generalize well on unlabeled test data that may have a different distribution from the training data.
Existing works on time series domain adaptation suffer from inconsistencies in evaluation schemes, datasets, and backbone neural network architectures.
We develop a benchmarking evaluation suite (AdaTime) to systematically and fairly evaluate different domain adaptation methods on time series data.
arXiv Detail & Related papers (2022-03-15T23:55:05Z) - Unsupervised Domain Adaptation for Spatio-Temporal Action Localization [69.12982544509427]
S-temporal action localization is an important problem in computer vision.
We propose an end-to-end unsupervised domain adaptation algorithm.
We show that significant performance gain can be achieved when spatial and temporal features are adapted separately or jointly.
arXiv Detail & Related papers (2020-10-19T04:25:10Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
A fundamental assumption of most machine learning algorithms is that the training and test data are drawn from the same underlying distribution.
In this work, we consider the problem setting of domain generalization, where the training data are structured into domains and there may be multiple test time shifts.
We introduce the framework of adaptive risk minimization (ARM), in which models are directly optimized for effective adaptation to shift by learning to adapt on the training domains.
arXiv Detail & Related papers (2020-07-06T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.