Improving Sampling Methods for Fine-tuning SentenceBERT in Text Streams
- URL: http://arxiv.org/abs/2403.15455v2
- Date: Fri, 16 Aug 2024 17:12:27 GMT
- Title: Improving Sampling Methods for Fine-tuning SentenceBERT in Text Streams
- Authors: Cristiano Mesquita Garcia, Alessandro Lameiras Koerich, Alceu de Souza Britto Jr, Jean Paul Barddal,
- Abstract summary: This study explores the efficacy of seven text sampling methods designed to selectively fine-tune language models.
We precisely assess the impact of these methods on fine-tuning the SBERT model using four different loss functions.
Our findings indicate that Softmax loss and Batch All Triplets loss are particularly effective for text stream classification.
- Score: 49.3179290313959
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of textual data on the Internet presents a unique opportunity for institutions and companies to monitor public opinion about their services and products. Given the rapid generation of such data, the text stream mining setting, which handles sequentially arriving, potentially infinite text streams, is often more suitable than traditional batch learning. While pre-trained language models are commonly employed for their high-quality text vectorization capabilities in streaming contexts, they face challenges adapting to concept drift - the phenomenon where the data distribution changes over time, adversely affecting model performance. Addressing the issue of concept drift, this study explores the efficacy of seven text sampling methods designed to selectively fine-tune language models, thereby mitigating performance degradation. We precisely assess the impact of these methods on fine-tuning the SBERT model using four different loss functions. Our evaluation, focused on Macro F1-score and elapsed time, employs two text stream datasets and an incremental SVM classifier to benchmark performance. Our findings indicate that Softmax loss and Batch All Triplets loss are particularly effective for text stream classification, demonstrating that larger sample sizes generally correlate with improved macro F1-scores. Notably, our proposed WordPieceToken ratio sampling method significantly enhances performance with the identified loss functions, surpassing baseline results.
Related papers
- BaFTA: Backprop-Free Test-Time Adaptation For Zero-Shot Vision-Language Models [20.88680592729709]
We propose a novel backpropagation-free algorithm BaFTA for test-time adaptation of vision-language models.
BaFTA directly estimates class centroids using online clustering within a projected embedding space.
We demonstrate that BaFTA consistently outperforms state-of-the-art test-time adaptation methods in both effectiveness and efficiency.
arXiv Detail & Related papers (2024-06-17T08:16:24Z) - Influence Scores at Scale for Efficient Language Data Sampling [3.072340427031969]
"influence scores" are used to identify important subsets of data.
In this paper, we explore the applicability of influence scores in language classification tasks.
arXiv Detail & Related papers (2023-11-27T20:19:22Z) - Error Norm Truncation: Robust Training in the Presence of Data Noise for Text Generation Models [39.37532848489779]
We propose Error Norm Truncation (ENT), a robust enhancement method to the standard training objective that truncates noisy data.
We show that ENT improves generation quality over standard training and previous soft and hard truncation methods.
arXiv Detail & Related papers (2023-10-02T01:30:27Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
We present the first benchmark that simulates the evaluation of open information extraction models in the real world.
We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique.
By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques.
arXiv Detail & Related papers (2023-05-23T12:05:09Z) - UZH_CLyp at SemEval-2023 Task 9: Head-First Fine-Tuning and ChatGPT Data
Generation for Cross-Lingual Learning in Tweet Intimacy Prediction [3.1798318618973362]
This paper describes the submission of UZH_CLyp for the SemEval 2023 Task 9 "Multilingual Tweet Intimacy Analysis"
We achieved second-best results in all 10 languages according to the official Pearson's correlation regression evaluation measure.
arXiv Detail & Related papers (2023-03-02T12:18:53Z) - Few-shot Text Classification with Dual Contrastive Consistency [31.141350717029358]
In this paper, we explore how to utilize pre-trained language model to perform few-shot text classification.
We adopt supervised contrastive learning on few labeled data and consistency-regularization on vast unlabeled data.
arXiv Detail & Related papers (2022-09-29T19:26:23Z) - A Closer Look at Debiased Temporal Sentence Grounding in Videos:
Dataset, Metric, and Approach [53.727460222955266]
Temporal Sentence Grounding in Videos (TSGV) aims to ground a natural language sentence in an untrimmed video.
Recent studies have found that current benchmark datasets may have obvious moment annotation biases.
We introduce a new evaluation metric "dR@n,IoU@m" that discounts the basic recall scores to alleviate the inflating evaluation caused by biased datasets.
arXiv Detail & Related papers (2022-03-10T08:58:18Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - A Simple but Tough-to-Beat Data Augmentation Approach for Natural
Language Understanding and Generation [53.8171136907856]
We introduce a set of simple yet effective data augmentation strategies dubbed cutoff.
cutoff relies on sampling consistency and thus adds little computational overhead.
cutoff consistently outperforms adversarial training and achieves state-of-the-art results on the IWSLT2014 German-English dataset.
arXiv Detail & Related papers (2020-09-29T07:08:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.