Inpainting-Driven Mask Optimization for Object Removal
- URL: http://arxiv.org/abs/2403.15849v1
- Date: Sat, 23 Mar 2024 13:52:16 GMT
- Title: Inpainting-Driven Mask Optimization for Object Removal
- Authors: Kodai Shimosato, Norimichi Ukita,
- Abstract summary: This paper proposes a mask optimization method for improving the quality of object removal using image inpainting.
In our method, this domain gap is resolved by training the inpainting network with object masks extracted by segmentation.
To optimize the object masks for inpainting, the segmentation network is connected to the inpainting network and end-to-end trained to improve the inpainting performance.
- Score: 15.429649454099085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a mask optimization method for improving the quality of object removal using image inpainting. While many inpainting methods are trained with a set of random masks, a target for inpainting may be an object, such as a person, in many realistic scenarios. This domain gap between masks in training and inference images increases the difficulty of the inpainting task. In our method, this domain gap is resolved by training the inpainting network with object masks extracted by segmentation, and such object masks are also used in the inference step. Furthermore, to optimize the object masks for inpainting, the segmentation network is connected to the inpainting network and end-to-end trained to improve the inpainting performance. The effect of this end-to-end training is further enhanced by our mask expansion loss for achieving the trade-off between large and small masks. Experimental results demonstrate the effectiveness of our method for better object removal using image inpainting.
Related papers
- ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE) have emerged as a robust self-supervised framework.
We introduce a data-independent method, termed ColorMAE, which generates different binary mask patterns by filtering random noise.
We demonstrate our strategy's superiority in downstream tasks compared to random masking.
arXiv Detail & Related papers (2024-07-17T22:04:00Z) - Variance-insensitive and Target-preserving Mask Refinement for
Interactive Image Segmentation [68.16510297109872]
Point-based interactive image segmentation can ease the burden of mask annotation in applications such as semantic segmentation and image editing.
We introduce a novel method, Variance-Insensitive and Target-Preserving Mask Refinement to enhance segmentation quality with fewer user inputs.
Experiments on GrabCut, Berkeley, SBD, and DAVIS datasets demonstrate our method's state-of-the-art performance in interactive image segmentation.
arXiv Detail & Related papers (2023-12-22T02:31:31Z) - Completing Visual Objects via Bridging Generation and Segmentation [84.4552458720467]
MaskComp delineates the completion process through iterative stages of generation and segmentation.
In each iteration, the object mask is provided as an additional condition to boost image generation.
We demonstrate that the combination of one generation and one segmentation stage effectively functions as a mask denoiser.
arXiv Detail & Related papers (2023-10-01T22:25:40Z) - PaintSeg: Training-free Segmentation via Painting [50.17936803209125]
PaintSeg is a new unsupervised method for segmenting objects without any training.
Inpainting and outpainting are alternated, with the former masking the foreground and filling in the background, and the latter masking the background while recovering the missing part of the foreground object.
Our experimental results demonstrate that PaintSeg outperforms existing approaches in coarse mask-prompt, box-prompt, and point-prompt segmentation tasks.
arXiv Detail & Related papers (2023-05-30T20:43:42Z) - AURA : Automatic Mask Generator using Randomized Input Sampling for Object Removal [26.81218265405809]
In this paper, we focus on generating the input mask to better remove objects using the off-the-shelf image inpainting network.
We propose an automatic mask generator inspired by the explainable AI (XAI) method, whose output can better remove objects than a semantic segmentation mask.
Experiments confirm that our method shows better performance in removing target class objects than the masks generated from the semantic segmentation maps.
arXiv Detail & Related papers (2023-05-13T07:51:35Z) - Shape-Aware Masking for Inpainting in Medical Imaging [49.61617087640379]
Inpainting has been proposed as a successful deep learning technique for unsupervised medical image model discovery.
We introduce a method for generating shape-aware masks for inpainting, which aims at learning the statistical shape prior.
We propose an unsupervised guided masking approach based on an off-the-shelf inpainting model and a superpixel over-segmentation algorithm.
arXiv Detail & Related papers (2022-07-12T18:35:17Z) - Layered Depth Refinement with Mask Guidance [61.10654666344419]
We formulate a novel problem of mask-guided depth refinement that utilizes a generic mask to refine the depth prediction of SIDE models.
Our framework performs layered refinement and inpainting/outpainting, decomposing the depth map into two separate layers signified by the mask and the inverse mask.
We empirically show that our method is robust to different types of masks and initial depth predictions, accurately refining depth values in inner and outer mask boundary regions.
arXiv Detail & Related papers (2022-06-07T06:42:44Z) - Learning Sparse Masks for Diffusion-based Image Inpainting [10.633099921979674]
Diffusion-based inpainting is a powerful tool for the reconstruction of images from sparse data.
We provide a model for highly efficient adaptive mask generation.
Experiments indicate that our model can achieve competitive quality with an acceleration by as much as four orders of magnitude.
arXiv Detail & Related papers (2021-10-06T10:20:59Z) - Iterative Facial Image Inpainting using Cyclic Reverse Generator [0.913755431537592]
Cyclic Reverse Generator (CRG) architecture provides an encoder-generator model.
We empirically observed that only a few iterations are sufficient to generate realistic images with the proposed model.
Our method allows applying sketch-based inpaintings, using variety of mask types, and producing multiple and diverse results.
arXiv Detail & Related papers (2021-01-18T12:19:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.