Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems
- URL: http://arxiv.org/abs/2403.15947v1
- Date: Sat, 23 Mar 2024 22:32:06 GMT
- Title: Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems
- Authors: Viet Dung Nguyen, Reynold Bailey, Gabriel J. Diaz, Chengyi Ma, Alexander Fix, Alexander Ororbia,
- Abstract summary: Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
- Score: 80.62854148838359
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate. Segmentation models trained using supervised machine learning can excel at this task, their effectiveness is determined by the degree of overlap between the narrow distributions of image properties defined by the target dataset and highly specific training datasets, of which there are few. Attempts to broaden the distribution of existing eye image datasets through the inclusion of synthetic eye images have found that a model trained on synthetic images will often fail to generalize back to real-world eye images. In remedy, we use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data, and to prune the training dataset in a manner that maximizes distribution overlap. We demonstrate that our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
Related papers
- Zero-Shot Object-Centric Representation Learning [72.43369950684057]
We study current object-centric methods through the lens of zero-shot generalization.
We introduce a benchmark comprising eight different synthetic and real-world datasets.
We find that training on diverse real-world images improves transferability to unseen scenarios.
arXiv Detail & Related papers (2024-08-17T10:37:07Z) - Improving the Effectiveness of Deep Generative Data [5.856292656853396]
Training a model on purely synthetic images for downstream image processing tasks results in an undesired performance drop compared to training on real data.
We propose a new taxonomy to describe factors contributing to this commonly observed phenomenon and investigate it on the popular CIFAR-10 dataset.
Our method outperforms baselines on downstream classification tasks both in case of training on synthetic only (Synthetic-to-Real) and training on a mix of real and synthetic data.
arXiv Detail & Related papers (2023-11-07T12:57:58Z) - LEyes: A Lightweight Framework for Deep Learning-Based Eye Tracking
using Synthetic Eye Images [9.150553995510217]
We present a framework called Light Eyes or "LEyes" which, unlike conventional methods, only models key image features required for video-based eye tracking.
We demonstrate that models trained using LEyes are consistently on-par or outperform other state-of-the-art algorithms in terms of pupil and CR localization.
arXiv Detail & Related papers (2023-09-12T11:08:14Z) - Cut-Paste Consistency Learning for Semi-Supervised Lesion Segmentation [0.20305676256390934]
Semi-supervised learning has the potential to improve the data-efficiency of training data-hungry deep neural networks.
We present a simple semi-supervised learning method for lesion segmentation tasks based on the ideas of cut-paste augmentation and consistency regularization.
arXiv Detail & Related papers (2022-10-01T04:43:54Z) - Dense Depth Distillation with Out-of-Distribution Simulated Images [30.79756881887895]
We study data-free knowledge distillation (KD) for monocular depth estimation (MDE)
KD learns a lightweight model for real-world depth perception tasks by compressing it from a trained teacher model while lacking training data in the target domain.
We show that our method outperforms the baseline KD by a good margin and even slightly better performance with as few as 1/6 of training images.
arXiv Detail & Related papers (2022-08-26T07:10:01Z) - EllSeg-Gen, towards Domain Generalization for head-mounted eyetracking [19.913297057204357]
We show that convolutional networks excel at extracting gaze features despite the presence of such artifacts.
We compare the performance of a single model trained with multiple datasets against a pool of models trained on individual datasets.
Results indicate that models tested on datasets in which eye images exhibit higher appearance variability benefit from multiset training.
arXiv Detail & Related papers (2022-05-04T08:35:52Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF.
We create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials.
Experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images.
arXiv Detail & Related papers (2020-04-01T12:56:13Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.