A Survey on Lexical Ambiguity Detection and Word Sense Disambiguation
- URL: http://arxiv.org/abs/2403.16129v1
- Date: Sun, 24 Mar 2024 12:58:48 GMT
- Title: A Survey on Lexical Ambiguity Detection and Word Sense Disambiguation
- Authors: Miuru Abeysiriwardana, Deshan Sumanathilaka,
- Abstract summary: This paper explores techniques that focus on understanding and resolving ambiguity in language within the field of natural language processing (NLP)
It outlines diverse approaches ranging from deep learning techniques to leveraging lexical resources and knowledge graphs like WordNet.
The research identifies persistent challenges in the field, such as the scarcity of sense annotated corpora and the complexity of informal clinical texts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores techniques that focus on understanding and resolving ambiguity in language within the field of natural language processing (NLP), highlighting the complexity of linguistic phenomena such as polysemy and homonymy and their implications for computational models. Focusing extensively on Word Sense Disambiguation (WSD), it outlines diverse approaches ranging from deep learning techniques to leveraging lexical resources and knowledge graphs like WordNet. The paper introduces cutting-edge methodologies like word sense extension (WSE) and neuromyotonic approaches, enhancing disambiguation accuracy by predicting new word senses. It examines specific applications in biomedical disambiguation and language specific optimisation and discusses the significance of cognitive metaphors in discourse analysis. The research identifies persistent challenges in the field, such as the scarcity of sense annotated corpora and the complexity of informal clinical texts. It concludes by suggesting future directions, including using large language models, visual WSD, and multilingual WSD systems, emphasising the ongoing evolution in addressing lexical complexities in NLP. This thinking perspective highlights the advancement in this field to enable computers to understand language more accurately.
Related papers
- Word Sense Disambiguation in Native Spanish: A Comprehensive Lexical Evaluation Resource [2.7775559369441964]
A lexical meaning of a word in context can be determined automatically by Word Sense Disambiguation (WSD) algorithms.
This study introduces a new resource for Spanish WSD.
It includes a sense inventory and a lexical dataset sourced from the Diccionario de la Lengua Espanola.
arXiv Detail & Related papers (2024-09-30T17:22:33Z) - Integrating LLM, EEG, and Eye-Tracking Biomarker Analysis for Word-Level
Neural State Classification in Semantic Inference Reading Comprehension [4.390968520425543]
This study aims to provide insights into individuals' neural states during a semantic relation reading-comprehension task.
We propose jointly analyzing LLMs, eye-gaze, and electroencephalographic (EEG) data to study how the brain processes words with varying degrees of relevance to a keyword during reading.
arXiv Detail & Related papers (2023-09-27T15:12:08Z) - Can Linguistic Knowledge Improve Multimodal Alignment in Vision-Language
Pretraining? [34.609984453754656]
We aim to elucidate the impact of comprehensive linguistic knowledge, including semantic expression and syntactic structure, on multimodal alignment.
Specifically, we design and release the SNARE, the first large-scale multimodal alignment probing benchmark.
arXiv Detail & Related papers (2023-08-24T16:17:40Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - Information-Restricted Neural Language Models Reveal Different Brain
Regions' Sensitivity to Semantics, Syntax and Context [87.31930367845125]
We trained a lexical language model, Glove, and a supra-lexical language model, GPT-2, on a text corpus.
We then assessed to what extent these information-restricted models were able to predict the time-courses of fMRI signal of humans listening to naturalistic text.
Our analyses show that, while most brain regions involved in language are sensitive to both syntactic and semantic variables, the relative magnitudes of these effects vary a lot across these regions.
arXiv Detail & Related papers (2023-02-28T08:16:18Z) - A Survey of Text Representation Methods and Their Genealogy [0.0]
In recent years, with the advent of highly scalable artificial-neural-network-based text representation methods the field of natural language processing has seen unprecedented growth and sophistication.
We provide a survey of current approaches, by arranging them in a genealogy, and by conceptualizing a taxonomy of text representation methods to examine and explain the state-of-the-art.
arXiv Detail & Related papers (2022-11-26T15:22:01Z) - An Inclusive Notion of Text [69.36678873492373]
We argue that clarity on the notion of text is crucial for reproducible and generalizable NLP.
We introduce a two-tier taxonomy of linguistic and non-linguistic elements that are available in textual sources and can be used in NLP modeling.
arXiv Detail & Related papers (2022-11-10T14:26:43Z) - A Linguistic Investigation of Machine Learning based Contradiction
Detection Models: An Empirical Analysis and Future Perspectives [0.34998703934432673]
We analyze two Natural Language Inference data sets with respect to their linguistic features.
The goal is to identify those syntactic and semantic properties that are particularly hard to comprehend for a machine learning model.
arXiv Detail & Related papers (2022-10-19T10:06:03Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
We propose a novel latent-variable formulation for constructing intrinsic probes.
We find empirical evidence that pre-trained representations develop a cross-lingually entangled notion of morphosyntax.
arXiv Detail & Related papers (2022-01-20T15:01:12Z) - CogAlign: Learning to Align Textual Neural Representations to Cognitive
Language Processing Signals [60.921888445317705]
We propose a CogAlign approach to integrate cognitive language processing signals into natural language processing models.
We show that CogAlign achieves significant improvements with multiple cognitive features over state-of-the-art models on public datasets.
arXiv Detail & Related papers (2021-06-10T07:10:25Z) - Semantics-Aware Inferential Network for Natural Language Understanding [79.70497178043368]
We propose a Semantics-Aware Inferential Network (SAIN) to meet such a motivation.
Taking explicit contextualized semantics as a complementary input, the inferential module of SAIN enables a series of reasoning steps over semantic clues.
Our model achieves significant improvement on 11 tasks including machine reading comprehension and natural language inference.
arXiv Detail & Related papers (2020-04-28T07:24:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.