Generating Potent Poisons and Backdoors from Scratch with Guided Diffusion
- URL: http://arxiv.org/abs/2403.16365v1
- Date: Mon, 25 Mar 2024 02:03:38 GMT
- Title: Generating Potent Poisons and Backdoors from Scratch with Guided Diffusion
- Authors: Hossein Souri, Arpit Bansal, Hamid Kazemi, Liam Fowl, Aniruddha Saha, Jonas Geiping, Andrew Gordon Wilson, Rama Chellappa, Tom Goldstein, Micah Goldblum,
- Abstract summary: Modern neural networks are often trained on massive datasets that are web scraped with minimal human inspection.
In this work, we use guided diffusion to synthesize base samples from scratch that lead to significantly more potent poisons and backdoors.
- Score: 146.05177661746274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern neural networks are often trained on massive datasets that are web scraped with minimal human inspection. As a result of this insecure curation pipeline, an adversary can poison or backdoor the resulting model by uploading malicious data to the internet and waiting for a victim to scrape and train on it. Existing approaches for creating poisons and backdoors start with randomly sampled clean data, called base samples, and then modify those samples to craft poisons. However, some base samples may be significantly more amenable to poisoning than others. As a result, we may be able to craft more potent poisons by carefully choosing the base samples. In this work, we use guided diffusion to synthesize base samples from scratch that lead to significantly more potent poisons and backdoors than previous state-of-the-art attacks. Our Guided Diffusion Poisoning (GDP) base samples can be combined with any downstream poisoning or backdoor attack to boost its effectiveness. Our implementation code is publicly available at: https://github.com/hsouri/GDP .
Related papers
- The Victim and The Beneficiary: Exploiting a Poisoned Model to Train a Clean Model on Poisoned Data [4.9676716806872125]
backdoor attacks have posed a serious security threat to the training process of deep neural networks (DNNs)
We propose a novel dual-network training framework: The Victim and The Beneficiary (V&B), which exploits a poisoned model to train a clean model without extra benign samples.
Our framework is effective in preventing backdoor injection and robust to various attacks while maintaining the performance on benign samples.
arXiv Detail & Related papers (2024-04-17T11:15:58Z) - Beating Backdoor Attack at Its Own Game [10.131734154410763]
Deep neural networks (DNNs) are vulnerable to backdoor attack.
Existing defense methods have greatly reduced attack success rate.
We propose a highly effective framework which injects non-adversarial backdoors targeting poisoned samples.
arXiv Detail & Related papers (2023-07-28T13:07:42Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - BATT: Backdoor Attack with Transformation-based Triggers [72.61840273364311]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
Backdoor adversaries inject hidden backdoors that can be activated by adversary-specified trigger patterns.
One recent research revealed that most of the existing attacks failed in the real physical world.
arXiv Detail & Related papers (2022-11-02T16:03:43Z) - Poison Attack and Defense on Deep Source Code Processing Models [38.32413592143839]
We present a poison attack framework for source code named CodePoisoner as a strong imaginary enemy.
CodePoisoner can produce compilable even human-imperceptible poison samples and attack models by poisoning the training data.
We propose an effective defense approach named CodeDetector to detect poison samples in the training data.
arXiv Detail & Related papers (2022-10-31T03:06:40Z) - Towards A Proactive ML Approach for Detecting Backdoor Poison Samples [38.21287048132065]
Adversaries can embed backdoors in deep learning models by introducing backdoor poison samples into training datasets.
In this work, we investigate how to detect such poison samples to mitigate the threat of backdoor attacks.
arXiv Detail & Related papers (2022-05-26T20:44:15Z) - Textual Backdoor Attacks Can Be More Harmful via Two Simple Tricks [58.0225587881455]
In this paper, we find two simple tricks that can make existing textual backdoor attacks much more harmful.
The first trick is to add an extra training task to distinguish poisoned and clean data during the training of the victim model.
The second one is to use all the clean training data rather than remove the original clean data corresponding to the poisoned data.
arXiv Detail & Related papers (2021-10-15T17:58:46Z) - Poison Ink: Robust and Invisible Backdoor Attack [122.49388230821654]
We propose a robust and invisible backdoor attack called Poison Ink''
Concretely, we first leverage the image structures as target poisoning areas, and fill them with poison ink (information) to generate the trigger pattern.
Compared to existing popular backdoor attack methods, Poison Ink outperforms both in stealthiness and robustness.
arXiv Detail & Related papers (2021-08-05T09:52:49Z) - DeepPoison: Feature Transfer Based Stealthy Poisoning Attack [2.1445455835823624]
DeepPoison is a novel adversarial network of one generator and two discriminators.
DeepPoison can achieve a state-of-the-art attack success rate, as high as 91.74%.
arXiv Detail & Related papers (2021-01-06T15:45:36Z) - Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and
Data Poisoning Attacks [74.88735178536159]
Data poisoning is the number one concern among threats ranging from model stealing to adversarial attacks.
We observe that data poisoning and backdoor attacks are highly sensitive to variations in the testing setup.
We apply rigorous tests to determine the extent to which we should fear them.
arXiv Detail & Related papers (2020-06-22T18:34:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.