Self-Supervised Learning for Medical Image Data with Anatomy-Oriented Imaging Planes
- URL: http://arxiv.org/abs/2403.16499v2
- Date: Sun, 7 Apr 2024 11:16:15 GMT
- Title: Self-Supervised Learning for Medical Image Data with Anatomy-Oriented Imaging Planes
- Authors: Tianwei Zhang, Dong Wei, Mengmeng Zhu, Shi Gu, Yefeng Zheng,
- Abstract summary: We propose two complementary pretext tasks for medical image data.
The first is to learn the relative orientation between the imaging planes and implemented as regressing their intersecting lines.
The second exploits parallel imaging planes to regress their relative slice locations within a stack.
- Score: 28.57933404578436
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Self-supervised learning has emerged as a powerful tool for pretraining deep networks on unlabeled data, prior to transfer learning of target tasks with limited annotation. The relevance between the pretraining pretext and target tasks is crucial to the success of transfer learning. Various pretext tasks have been proposed to utilize properties of medical image data (e.g., three dimensionality), which are more relevant to medical image analysis than generic ones for natural images. However, previous work rarely paid attention to data with anatomy-oriented imaging planes, e.g., standard cardiac magnetic resonance imaging views. As these imaging planes are defined according to the anatomy of the imaged organ, pretext tasks effectively exploiting this information can pretrain the networks to gain knowledge on the organ of interest. In this work, we propose two complementary pretext tasks for this group of medical image data based on the spatial relationship of the imaging planes. The first is to learn the relative orientation between the imaging planes and implemented as regressing their intersecting lines. The second exploits parallel imaging planes to regress their relative slice locations within a stack. Both pretext tasks are conceptually straightforward and easy to implement, and can be combined in multitask learning for better representation learning. Thorough experiments on two anatomical structures (heart and knee) and representative target tasks (semantic segmentation and classification) demonstrate that the proposed pretext tasks are effective in pretraining deep networks for remarkably boosted performance on the target tasks, and superior to other recent approaches.
Related papers
- Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
We introduce a pioneering method for learning 3D medical image representations through an autoregressive sequence pre-training framework.
Our approach various 3D medical images based on spatial, contrast, and semantic correlations, treating them as interconnected visual tokens within a token sequence.
arXiv Detail & Related papers (2024-09-13T10:19:10Z) - Self-supervised Learning via Cluster Distance Prediction for Operating Room Context Awareness [44.15562068190958]
In the Operating Room, semantic segmentation is at the core of creating robots aware of clinical surroundings.
State-of-the-art semantic segmentation and activity recognition approaches are fully supervised, which is not scalable.
We propose a new 3D self-supervised task for OR scene understanding utilizing OR scene images captured with ToF cameras.
arXiv Detail & Related papers (2024-07-07T17:17:52Z) - Multi-organ Self-supervised Contrastive Learning for Breast Lesion
Segmentation [0.0]
This paper employs multi-organ datasets for pre-training models tailored to specific organ-related target tasks.
Our target task is breast tumour segmentation in ultrasound images.
Results show that conventional contrastive learning pre-training improves performance compared to supervised baseline approaches.
arXiv Detail & Related papers (2024-02-21T20:29:21Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
We propose a multi-modal convolutional neural network architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure.
Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels.
arXiv Detail & Related papers (2021-10-12T21:22:24Z) - Task Fingerprinting for Meta Learning in Biomedical Image Analysis [0.6685643907416715]
Shortage of annotated data is one of the greatest bottlenecks in biomedical image analysis.
In this paper, we address the problem of quantifying task similarity with a concept that we refer to as task fingerprinting.
The concept involves converting a given task, represented by imaging data and corresponding labels, to a fixed-length vector representation.
arXiv Detail & Related papers (2021-07-08T16:20:28Z) - Contrastive Learning of Medical Visual Representations from Paired
Images and Text [38.91117443316013]
We propose ConVIRT, an unsupervised strategy to learn medical visual representations by exploiting naturally occurring descriptive paired text.
Our new method of pretraining medical image encoders with the paired text data via a bidirectional contrastive objective between the two modalities is domain-agnostic, and requires no additional expert input.
arXiv Detail & Related papers (2020-10-02T02:10:18Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
Two neural co-attentions are incorporated into the classifier to capture cross-image semantic similarities and differences.
In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference.
Our algorithm sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability.
arXiv Detail & Related papers (2020-07-03T21:53:46Z) - Unified Representation Learning for Efficient Medical Image Analysis [0.623075162128532]
We propose a multi-task training approach for medical image analysis using a unified modality-specific feature representation (UMS-Rep)
Our results demonstrate that the proposed approach reduces the overall demand for computational resources and improves target task generalization and performance.
arXiv Detail & Related papers (2020-06-19T16:52:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.