Resource and Mobility Management in Hybrid LiFi and WiFi Networks: A User-Centric Learning Approach
- URL: http://arxiv.org/abs/2403.16823v1
- Date: Mon, 25 Mar 2024 14:48:00 GMT
- Title: Resource and Mobility Management in Hybrid LiFi and WiFi Networks: A User-Centric Learning Approach
- Authors: Han Ji, Xiping Wu,
- Abstract summary: Hybrid light fidelity (LiFi) and wireless fidelity (WiFi) networks (HLWNets) are an emerging indoor wireless communication paradigm.
The existing load balancing (LB) methods are mostly network-centric, relying on a central unit to make a solution for the users all at once.
Motivated by this, we investigate user-centric LB which allows users to update their solutions at different paces.
- Score: 10.262324160476586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid light fidelity (LiFi) and wireless fidelity (WiFi) networks (HLWNets) are an emerging indoor wireless communication paradigm, which combines the advantages of the capacious optical spectra of LiFi and ubiquitous coverage of WiFi. Meanwhile, load balancing (LB) becomes a key challenge in resource management for such hybrid networks. The existing LB methods are mostly network-centric, relying on a central unit to make a solution for the users all at once. Consequently, the solution needs to be updated for all users at the same pace, regardless of their moving status. This would affect the network performance in two aspects: i) when the update frequency is low, it would compromise the connectivity of fast-moving users; ii) when the update frequency is high, it would cause unnecessary handovers as well as hefty feedback costs for slow-moving users. Motivated by this, we investigate user-centric LB which allows users to update their solutions at different paces. The research is developed upon our previous work on adaptive target-condition neural network (ATCNN), which can conduct LB for individual users in quasi-static channels. In this paper, a deep neural network (DNN) model is designed to enable an adaptive update interval for each individual user. This new model is termed as mobility-supporting neural network (MSNN). Associating MSNN with ATCNN, a user-centric LB framework named mobility-supporting ATCNN (MS-ATCNN) is proposed to handle resource management and mobility management simultaneously. Results show that at the same level of average update interval, MS-ATCNN can achieve a network throughput up to 215\% higher than conventional LB methods such as game theory, especially for a larger number of users. In addition, MS-ATCNN costs an ultra low runtime at the level of 100s $\mu$s, which is two to three orders of magnitude lower than game theory.
Related papers
- Learning Load Balancing with GNN in MPTCP-Enabled Heterogeneous Networks [13.178956651532213]
We propose a graph neural network (GNN)-based model to tackle the LB problem for MP TCP-enabled HetNets.
Compared to the conventional deep neural network (DNN), the proposed GNN-based model exhibits two key strengths.
arXiv Detail & Related papers (2024-10-22T15:49:53Z) - Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
We propose an integrated federated split learning and hyperdimensional computing framework for emerging foundation models.
This novel approach reduces communication costs, computation load, and privacy risks, making it suitable for resource-constrained edge devices in the Metaverse.
arXiv Detail & Related papers (2024-08-26T17:03:14Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
We focus on the task where the agent needs to learn multi-dimensional deterministic policies to control.
Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected layer.
To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects.
arXiv Detail & Related papers (2024-01-09T07:31:34Z) - Graph Neural Networks-Based User Pairing in Wireless Communication
Systems [0.34410212782758043]
We propose an unsupervised graph neural network (GNN) approach to efficiently solve the user pairing problem.
At 20 dB SNR, our proposed approach achieves a 49% better sum rate than k-means and a staggering 95% better sum rate than SUS.
arXiv Detail & Related papers (2023-05-14T11:57:42Z) - Multi-Carrier NOMA-Empowered Wireless Federated Learning with Optimal
Power and Bandwidth Allocation [31.80744279032665]
Wireless federated learning (WFL) undergoes a bottleneck communication in uplink, limiting the number of users that can upload their local models in each global aggregation round.
This paper presents a new multi-carrier non-orthogonal multiple-access (MC-NOMA) WFL that allows the users to train different numbers of iterations per round.
As corroborated using a convolutional neural network and an 18-layer residential network, the proposed MC-NOMA WFL can efficiently reduce communication, increase local model training times, and accelerate the convergence by over 40%, compared to its existing alternative.
arXiv Detail & Related papers (2023-02-13T22:41:14Z) - Adaptive Target-Condition Neural Network: DNN-Aided Load Balancing for
Hybrid LiFi and WiFi Networks [19.483289519348315]
Machine learning has the potential to provide a complexity-friendly load balancing solution.
The state-of-the-art (SOTA) learning-aided LB methods need retraining when the network environment changes.
A novel deep neural network (DNN) structure named adaptive target-condition neural network (A-TCNN) is proposed.
arXiv Detail & Related papers (2022-08-09T20:46:13Z) - Joint Superposition Coding and Training for Federated Learning over
Multi-Width Neural Networks [52.93232352968347]
This paper aims to integrate two synergetic technologies, federated learning (FL) and width-adjustable slimmable neural network (SNN)
FL preserves data privacy by exchanging the locally trained models of mobile devices. SNNs are however non-trivial, particularly under wireless connections with time-varying channel conditions.
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2021-12-05T11:17:17Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - Deep-Mobility: A Deep Learning Approach for an Efficient and Reliable 5G
Handover [0.0]
5G cellular networks are being deployed all over the world and this architecture supports ultra-dense network (UDN) deployment.
Small cells have a very important role in providing 5G connectivity to the end users.
In contrast to any traditional handover improvement scheme, we develop a 'Deep-Mobility' model by implementing a deep learning neural network (DLNN) to manage network mobility.
arXiv Detail & Related papers (2021-01-17T00:31:37Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
We consider the problem of downlink power control in wireless networks, consisting of multiple transmitter-receiver pairs communicating over a single shared wireless medium.
To mitigate the interference among concurrent transmissions, we leverage the network topology to create a graph neural network architecture.
We then use an unsupervised primal-dual counterfactual optimization approach to learn optimal power allocation decisions.
arXiv Detail & Related papers (2020-02-17T07:54:39Z) - Convergence Time Optimization for Federated Learning over Wireless
Networks [160.82696473996566]
A wireless network is considered in which wireless users transmit their local FL models (trained using their locally collected data) to a base station (BS)
The BS, acting as a central controller, generates a global FL model using the received local FL models and broadcasts it back to all users.
Due to the limited number of resource blocks (RBs) in a wireless network, only a subset of users can be selected to transmit their local FL model parameters to the BS.
Since each user has unique training data samples, the BS prefers to include all local user FL models to generate a converged global FL model.
arXiv Detail & Related papers (2020-01-22T01:55:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.