AIOS: LLM Agent Operating System
- URL: http://arxiv.org/abs/2403.16971v3
- Date: Thu, 07 Nov 2024 19:10:11 GMT
- Title: AIOS: LLM Agent Operating System
- Authors: Kai Mei, Xi Zhu, Wujiang Xu, Wenyue Hua, Mingyu Jin, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang Ge, Yongfeng Zhang,
- Abstract summary: This paper proposes the architecture of AIOS (LLM-based AI Agent Operating System) under the context of managing LLM-based agents.
It introduces a novel architecture for serving LLM-based agents by isolating resources and LLM-specific services from agent applications into an AIOS kernel.
Using AIOS can achieve up to 2.1x faster execution for serving agents built by various agent frameworks.
- Score: 39.59087894012381
- License:
- Abstract: LLM-based intelligent agents face significant deployment challenges, particularly related to resource management. Allowing unrestricted access to LLM or tool resources can lead to inefficient or even potentially harmful resource allocation and utilization for agents. Furthermore, the absence of proper scheduling and resource management mechanisms in current agent designs hinders concurrent processing and limits overall system efficiency. As the diversity and complexity of agents continue to grow, addressing these resource management issues becomes increasingly critical to LLM-based agent systems. To address these challenges, this paper proposes the architecture of AIOS (LLM-based AI Agent Operating System) under the context of managing LLM-based agents. It introduces a novel architecture for serving LLM-based agents by isolating resources and LLM-specific services from agent applications into an AIOS kernel. This AIOS kernel provides fundamental services (e.g., scheduling, context management, memory management, storage management, access control) and efficient management of resources (e.g., LLM and external tools) for runtime agents. To enhance usability, AIOS also includes an AIOS-Agent SDK, a comprehensive suite of APIs designed for utilizing functionalities provided by the AIOS kernel. Experimental results demonstrate that using AIOS can achieve up to 2.1x faster execution for serving agents built by various agent frameworks. The source code is available at https://github.com/agiresearch/AIOS.
Related papers
- Multi-LLM-Agent Systems: Techniques and Business Perspectives [23.899484049367796]
This paper discusses the technical and business landscapes of a multi-LLM-agent system (MLAS)
Compared to the previous single-LLM-agent system, a MLAS has the advantages of i) higher potential of task-solving performance, ii) higher flexibility for system changing, and iv) feasibility of monetization for each entity.
arXiv Detail & Related papers (2024-11-21T11:36:29Z) - Turn Every Application into an Agent: Towards Efficient Human-Agent-Computer Interaction with API-First LLM-Based Agents [40.86728610906313]
AXIS is a novel LLM-based agents framework that prioritizes actions through application programming interfaces (APIs) over user interface actions.
Our experiments on Office Word demonstrate that AXIS reduces task completion time by 65%-70% and cognitive workload by 38%-53%, while maintaining accuracy of 97%-98% compare to humans.
It also explores the possibility of turning every applications into agents, paving the way towards an agent-centric operating system (Agent OS)
arXiv Detail & Related papers (2024-09-25T17:58:08Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
This approach entails the strategic use of well-crafted prompts to infuse human experience and knowledge into these sophisticated LLMs.
This integration represents the future paradigm of artificial intelligence (AI) as a service and AI for more ease.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
We open-source a new AI agent library, AgentLite, which simplifies research investigation into LLM agents.
AgentLite is a task-oriented framework designed to enhance the ability of agents to break down tasks.
We introduce multiple practical applications developed with AgentLite to demonstrate its convenience and flexibility.
arXiv Detail & Related papers (2024-02-23T06:25:20Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - Understanding the Weakness of Large Language Model Agents within a
Complex Android Environment [21.278266207772756]
Large language models (LLMs) have empowered intelligent agents to execute intricate tasks within domain-specific software such as browsers and games.
LLMs face three primary challenges when applied to general-purpose software systems like operating systems.
These challenges motivate AndroidArena, an environment and benchmark designed to evaluate LLM agents on a modern operating system.
arXiv Detail & Related papers (2024-02-09T18:19:25Z) - LLM as OS, Agents as Apps: Envisioning AIOS, Agents and the AIOS-Agent
Ecosystem [48.81136793994758]
Large Language Model (LLM) serves as the (Artificial) Intelligent Operating System (IOS), or AIOS--an operating system "with soul"
We envision that LLM's impact will not be limited to the AI application level, instead, it will in turn revolutionize the design and implementation of computer system, architecture, software, and programming language.
arXiv Detail & Related papers (2023-12-06T18:50:26Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.