Comp4D: LLM-Guided Compositional 4D Scene Generation
- URL: http://arxiv.org/abs/2403.16993v1
- Date: Mon, 25 Mar 2024 17:55:52 GMT
- Title: Comp4D: LLM-Guided Compositional 4D Scene Generation
- Authors: Dejia Xu, Hanwen Liang, Neel P. Bhatt, Hezhen Hu, Hanxue Liang, Konstantinos N. Plataniotis, Zhangyang Wang,
- Abstract summary: We present Comp4D, a novel framework for Compositional 4D Generation.
Unlike conventional methods that generate a singular 4D representation of the entire scene, Comp4D innovatively constructs each 4D object within the scene separately.
Our method employs a compositional score distillation technique guided by the pre-defined trajectories.
- Score: 65.5810466788355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in diffusion models for 2D and 3D content creation have sparked a surge of interest in generating 4D content. However, the scarcity of 3D scene datasets constrains current methodologies to primarily object-centric generation. To overcome this limitation, we present Comp4D, a novel framework for Compositional 4D Generation. Unlike conventional methods that generate a singular 4D representation of the entire scene, Comp4D innovatively constructs each 4D object within the scene separately. Utilizing Large Language Models (LLMs), the framework begins by decomposing an input text prompt into distinct entities and maps out their trajectories. It then constructs the compositional 4D scene by accurately positioning these objects along their designated paths. To refine the scene, our method employs a compositional score distillation technique guided by the pre-defined trajectories, utilizing pre-trained diffusion models across text-to-image, text-to-video, and text-to-3D domains. Extensive experiments demonstrate our outstanding 4D content creation capability compared to prior arts, showcasing superior visual quality, motion fidelity, and enhanced object interactions.
Related papers
- Trans4D: Realistic Geometry-Aware Transition for Compositional Text-to-4D Synthesis [60.853577108780414]
Existing 4D generation methods can generate high-quality 4D objects or scenes based on user-friendly conditions.
We propose Trans4D, a novel text-to-4D synthesis framework that enables realistic complex scene transitions.
In experiments, Trans4D consistently outperforms existing state-of-the-art methods in generating 4D scenes with accurate and high-quality transitions.
arXiv Detail & Related papers (2024-10-09T17:56:03Z) - CT4D: Consistent Text-to-4D Generation with Animatable Meshes [53.897244823604346]
We present a novel framework, coined CT4D, which directly operates on animatable meshes for generating consistent 4D content from arbitrary user-supplied prompts.
Our framework incorporates a unique Generate-Refine-Animate (GRA) algorithm to enhance the creation of text-aligned meshes.
Our experimental results, both qualitative and quantitative, demonstrate that our CT4D framework surpasses existing text-to-4D techniques in maintaining interframe consistency and preserving global geometry.
arXiv Detail & Related papers (2024-08-15T14:41:34Z) - Instruct 4D-to-4D: Editing 4D Scenes as Pseudo-3D Scenes Using 2D Diffusion [30.331519274430594]
Instruct 4D-to-4D generates high-quality instruction-guided dynamic scene editing results.
We treat a 4D scene as a pseudo-3D scene, decoupled into two sub-problems: achieving temporal consistency in video editing and applying these edits to the pseudo-3D scene.
We extensively evaluate our approach in various scenes and editing instructions, and demonstrate that it achieves spatially and temporally consistent editing results.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
We present a novel framework, textbfDiffusion4D, for efficient and scalable 4D content generation.
We develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets.
Our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency.
arXiv Detail & Related papers (2024-05-26T17:47:34Z) - 4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency [118.15258850780417]
This work introduces 4DGen, a novel framework for grounded 4D content creation.
We identify static 3D assets and monocular video sequences as key components in constructing the 4D content.
Our pipeline facilitates conditional 4D generation, enabling users to specify geometry (3D assets) and motion (monocular videos)
arXiv Detail & Related papers (2023-12-28T18:53:39Z) - 4D-fy: Text-to-4D Generation Using Hybrid Score Distillation Sampling [91.99172731031206]
Current text-to-4D methods face a three-way tradeoff between quality of scene appearance, 3D structure, and motion.
We introduce hybrid score distillation sampling, an alternating optimization procedure that blends supervision signals from multiple pre-trained diffusion models.
arXiv Detail & Related papers (2023-11-29T18:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.