Temporal-Spatial Processing of Event Camera Data via Delay-Loop Reservoir Neural Network
- URL: http://arxiv.org/abs/2403.17013v1
- Date: Mon, 12 Feb 2024 16:24:13 GMT
- Title: Temporal-Spatial Processing of Event Camera Data via Delay-Loop Reservoir Neural Network
- Authors: Richard Lau, Anthony Tylan-Tyler, Lihan Yao, Rey de Castro Roberto, Robert Taylor, Isaiah Jones,
- Abstract summary: We study a conjecture motivated by our previous study of video processing with delay loop reservoir neural network.
In this paper, we will exploit this new finding to guide our design of a delay-loop reservoir neural network for event camera classification.
- Score: 0.11309478649967238
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes a temporal-spatial model for video processing with special applications to processing event camera videos. We propose to study a conjecture motivated by our previous study of video processing with delay loop reservoir (DLR) neural network, which we call Temporal-Spatial Conjecture (TSC). The TSC postulates that there is significant information content carried in the temporal representation of a video signal and that machine learning algorithms would benefit from separate optimization of the spatial and temporal components for intelligent processing. To verify or refute the TSC, we propose a Visual Markov Model (VMM) which decompose the video into spatial and temporal components and estimate the mutual information (MI) of these components. Since computation of video mutual information is complex and time consuming, we use a Mutual Information Neural Network to estimate the bounds of the mutual information. Our result shows that the temporal component carries significant MI compared to that of the spatial component. This finding has often been overlooked in neural network literature. In this paper, we will exploit this new finding to guide our design of a delay-loop reservoir neural network for event camera classification, which results in a 18% improvement on classification accuracy.
Related papers
- DroneAttention: Sparse Weighted Temporal Attention for Drone-Camera
Based Activity Recognition [2.705905918316948]
Human activity recognition (HAR) using drone-mounted cameras has attracted considerable interest from the computer vision research community in recent years.
We propose a novel Sparse Weighted Temporal Attention (SWTA) module to utilize sparsely sampled video frames for obtaining global weighted temporal attention.
The proposed model has received an accuracy of 72.76%, 92.56%, and 78.86% on the respective datasets.
arXiv Detail & Related papers (2022-12-07T00:33:40Z) - SWTF: Sparse Weighted Temporal Fusion for Drone-Based Activity
Recognition [2.7677069267434873]
Drone-camera based human activity recognition (HAR) has received significant attention from the computer vision research community.
We propose a novel Sparse Weighted Temporal Fusion (SWTF) module to utilize sparsely sampled video frames.
The proposed model has received an accuracy of 72.76%, 92.56%, and 78.86% on the respective datasets.
arXiv Detail & Related papers (2022-11-10T12:45:43Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - STIP: A SpatioTemporal Information-Preserving and Perception-Augmented
Model for High-Resolution Video Prediction [78.129039340528]
We propose a Stemporal Information-Preserving and Perception-Augmented Model (STIP) to solve the above two problems.
The proposed model aims to preserve thetemporal information for videos during the feature extraction and the state transitions.
Experimental results show that the proposed STIP can predict videos with more satisfactory visual quality compared with a variety of state-of-the-art methods.
arXiv Detail & Related papers (2022-06-09T09:49:04Z) - An End-to-End Integrated Computation and Communication Architecture for
Goal-oriented Networking: A Perspective on Live Surveillance Video [0.0]
We propose situation-aware streaming, for real-time identification of important events from live-feeds at the source.
We show that the proposed scheme is able to reduce the required power consumption of the transmitter by 38.5% for 2160p (UHD) video.
arXiv Detail & Related papers (2022-04-05T04:59:54Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z) - Fast Video Salient Object Detection via Spatiotemporal Knowledge
Distillation [20.196945571479002]
We present a lightweight network tailored for video salient object detection.
Specifically, we combine a saliency guidance embedding structure and spatial knowledge distillation to refine the spatial features.
In the temporal aspect, we propose a temporal knowledge distillation strategy, which allows the network to learn the robust temporal features.
arXiv Detail & Related papers (2020-10-20T04:48:36Z) - A Prospective Study on Sequence-Driven Temporal Sampling and Ego-Motion
Compensation for Action Recognition in the EPIC-Kitchens Dataset [68.8204255655161]
Action recognition is one of the top-challenging research fields in computer vision.
ego-motion recorded sequences have become of important relevance.
The proposed method aims to cope with it by estimating this ego-motion or camera motion.
arXiv Detail & Related papers (2020-08-26T14:44:45Z) - Multivariate Time Series Classification Using Spiking Neural Networks [7.273181759304122]
Spiking neural network has drawn attention as it enables low power consumption.
We present an encoding scheme to convert time series into sparse spatial temporal spike patterns.
A training algorithm to classify spatial temporal patterns is also proposed.
arXiv Detail & Related papers (2020-07-07T15:24:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.