A Study in Dataset Pruning for Image Super-Resolution
- URL: http://arxiv.org/abs/2403.17083v2
- Date: Sat, 8 Jun 2024 07:53:16 GMT
- Title: A Study in Dataset Pruning for Image Super-Resolution
- Authors: Brian B. Moser, Federico Raue, Andreas Dengel,
- Abstract summary: We introduce a novel approach that reduces a dataset to a core-set of training samples, selected based on their loss values.
We achieve results comparable to or surpassing those obtained from training on the entire dataset.
- Score: 9.512648704408095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In image Super-Resolution (SR), relying on large datasets for training is a double-edged sword. While offering rich training material, they also demand substantial computational and storage resources. In this work, we analyze dataset pruning to solve these challenges. We introduce a novel approach that reduces a dataset to a core-set of training samples, selected based on their loss values as determined by a simple pre-trained SR model. By focusing the training on just 50\% of the original dataset, specifically on the samples characterized by the highest loss values, we achieve results comparable to or surpassing those obtained from training on the entire dataset. Interestingly, our analysis reveals that the top 5\% of samples with the highest loss values negatively affect the training process. Excluding these samples and adjusting the selection to favor easier samples further enhances training outcomes. Our work opens new perspectives to the untapped potential of dataset pruning in image SR. It suggests that careful selection of training data based on loss-value metrics can lead to better SR models, challenging the conventional wisdom that more data inevitably leads to better performance.
Related papers
- A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Rethinking Image Super-Resolution from Training Data Perspectives [54.28824316574355]
We investigate the understudied effect of the training data used for image super-resolution (SR)
With this, we propose an automated image evaluation pipeline.
We find that datasets with (i) low compression artifacts, (ii) high within-image diversity as judged by the number of different objects, and (iii) a large number of images from ImageNet or PASS all positively affect SR performance.
arXiv Detail & Related papers (2024-09-01T16:25:04Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Exploring Learning Complexity for Efficient Downstream Dataset Pruning [8.990878450631596]
Existing dataset pruning methods require training on the entire dataset.
We propose a straightforward, novel, and training-free hardness score named Distorting-based Learning Complexity (DLC)
Our method is motivated by the observation that easy samples learned faster can also be learned with fewer parameters.
arXiv Detail & Related papers (2024-02-08T02:29:33Z) - Repeated Random Sampling for Minimizing the Time-to-Accuracy of Learning [28.042568086423298]
Repeated Sampling of Random Subsets (RS2) is a powerful yet overlooked random sampling strategy.
We test RS2 against thirty state-of-the-art data pruning and data distillation methods across four datasets including ImageNet.
Our results demonstrate that RS2 significantly reduces time-to-accuracy compared to existing techniques.
arXiv Detail & Related papers (2023-05-28T20:38:13Z) - Dataset Pruning: Reducing Training Data by Examining Generalization
Influence [30.30255670341501]
Do all training data contribute to model's performance?
How to construct a smallest subset from the entire training data as a proxy training set without significantly sacrificing the model's performance?
arXiv Detail & Related papers (2022-05-19T05:36:35Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
Transformer-based supervised pre-training achieves great performance in person re-identification (ReID)
Due to the domain gap between ImageNet and ReID datasets, it usually needs a larger pre-training dataset to boost the performance.
This work aims to mitigate the gap between the pre-training and ReID datasets from the perspective of data and model structure.
arXiv Detail & Related papers (2021-11-23T18:59:08Z) - A Data-Centric Approach for Training Deep Neural Networks with Less Data [1.9014535120129343]
This paper summarizes our winning submission to the "Data-Centric AI" competition.
We discuss some of the challenges that arise while training with a small dataset.
We propose a GAN-based solution for synthesizing new data points.
arXiv Detail & Related papers (2021-10-07T16:41:52Z) - Efficient Conditional Pre-training for Transfer Learning [71.01129334495553]
We propose efficient filtering methods to select relevant subsets from the pre-training dataset.
We validate our techniques by pre-training on ImageNet in both the unsupervised and supervised settings.
We improve standard ImageNet pre-training by 1-3% by tuning available models on our subsets and pre-training on a dataset filtered from a larger scale dataset.
arXiv Detail & Related papers (2020-11-20T06:16:15Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.