AnimateMe: 4D Facial Expressions via Diffusion Models
- URL: http://arxiv.org/abs/2403.17213v1
- Date: Mon, 25 Mar 2024 21:40:44 GMT
- Title: AnimateMe: 4D Facial Expressions via Diffusion Models
- Authors: Dimitrios Gerogiannis, Foivos Paraperas Papantoniou, Rolandos Alexandros Potamias, Alexandros Lattas, Stylianos Moschoglou, Stylianos Ploumpis, Stefanos Zafeiriou,
- Abstract summary: Recent advances in diffusion models have enhanced the capabilities of generative models in 2D animation.
We employ Graph Neural Networks (GNNs) as denoising diffusion models in a novel approach, formulating the diffusion process directly on the mesh space.
This facilitates the generation of facial deformations through a mesh-diffusion-based model.
- Score: 72.63383191654357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of photorealistic 3D avatar reconstruction and generation has garnered significant attention in recent years; however, animating such avatars remains challenging. Recent advances in diffusion models have notably enhanced the capabilities of generative models in 2D animation. In this work, we directly utilize these models within the 3D domain to achieve controllable and high-fidelity 4D facial animation. By integrating the strengths of diffusion processes and geometric deep learning, we employ Graph Neural Networks (GNNs) as denoising diffusion models in a novel approach, formulating the diffusion process directly on the mesh space and enabling the generation of 3D facial expressions. This facilitates the generation of facial deformations through a mesh-diffusion-based model. Additionally, to ensure temporal coherence in our animations, we propose a consistent noise sampling method. Under a series of both quantitative and qualitative experiments, we showcase that the proposed method outperforms prior work in 4D expression synthesis by generating high-fidelity extreme expressions. Furthermore, we applied our method to textured 4D facial expression generation, implementing a straightforward extension that involves training on a large-scale textured 4D facial expression database.
Related papers
- 4Diffusion: Multi-view Video Diffusion Model for 4D Generation [55.82208863521353]
Current 4D generation methods have achieved noteworthy efficacy with the aid of advanced diffusion generative models.
We propose a novel 4D generation pipeline, namely 4Diffusion, aimed at generating spatial-temporally consistent 4D content from a monocular video.
arXiv Detail & Related papers (2024-05-31T08:18:39Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
We present a novel framework, textbfDiffusion4D, for efficient and scalable 4D content generation.
We develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets.
Our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency.
arXiv Detail & Related papers (2024-05-26T17:47:34Z) - Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed
Diffusion Models [94.07744207257653]
We focus on the underexplored text-to-4D setting and synthesize dynamic, animated 3D objects.
We combine text-to-image, text-to-video, and 3D-aware multiview diffusion models to provide feedback during 4D object optimization.
arXiv Detail & Related papers (2023-12-21T11:41:02Z) - CAD: Photorealistic 3D Generation via Adversarial Distillation [28.07049413820128]
We propose a novel learning paradigm for 3D synthesis that utilizes pre-trained diffusion models.
Our method unlocks the generation of high-fidelity and photorealistic 3D content conditioned on a single image and prompt.
arXiv Detail & Related papers (2023-12-11T18:59:58Z) - Animate124: Animating One Image to 4D Dynamic Scene [108.17635645216214]
Animate124 is the first work to animate a single in-the-wild image into 3D video through textual motion descriptions.
Our method demonstrates significant advancements over existing baselines.
arXiv Detail & Related papers (2023-11-24T16:47:05Z) - 4D Facial Expression Diffusion Model [3.507793603897647]
We introduce a generative framework for generating 3D facial expression sequences.
It is composed of two tasks: Learning the generative model that is trained over a set of 3D landmark sequences, and Generating 3D mesh sequences of an input facial mesh driven by the generated landmark sequences.
Experiments show that our model has learned to generate realistic, quality expressions solely from the dataset of relatively small size, improving over the state-of-the-art methods.
arXiv Detail & Related papers (2023-03-29T11:50:21Z) - Learning to Generate Customized Dynamic 3D Facial Expressions [47.5220752079009]
We study 3D image-to-video translation with a particular focus on 4D facial expressions.
We employ a deep mesh-decoder like architecture to synthesize realistic high resolution facial expressions.
We trained our model using a high resolution dataset with 4D scans of six facial expressions from 180 subjects.
arXiv Detail & Related papers (2020-07-19T22:38:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.