An Undergraduate Consortium for Addressing the Leaky Pipeline to Computing Research
- URL: http://arxiv.org/abs/2403.17215v1
- Date: Mon, 25 Mar 2024 21:43:43 GMT
- Title: An Undergraduate Consortium for Addressing the Leaky Pipeline to Computing Research
- Authors: James Boerkoel, Mehmet Ergezer,
- Abstract summary: This experience report describes a first-of-its-kind Undergraduate Consortium (UC)
The UC aims to broaden participation in the AI research community by recruiting students, particularly those from historically marginalized groups.
This paper presents our program design, inspired by a rich set of evidence-based practices, and a preliminary evaluation of the first years that points to the UC achieving many of its desired outcomes.
- Score: 1.9336815376402718
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite an increasing number of successful interventions designed to broaden participation in computing research, there is still significant attrition among historically marginalized groups in the computing research pipeline. This experience report describes a first-of-its-kind Undergraduate Consortium (UC) that addresses this challenge by empowering students with a culmination of their undergraduate research in a conference setting. The UC, conducted at the AAAI Conference on Artificial Intelligence (AAAI), aims to broaden participation in the AI research community by recruiting students, particularly those from historically marginalized groups, supporting them with mentorship, advising, and networking as an accelerator toward graduate school, AI research, and their scientific identity. This paper presents our program design, inspired by a rich set of evidence-based practices, and a preliminary evaluation of the first years that points to the UC achieving many of its desired outcomes. We conclude by discussing insights to improve our program and expand to other computing communities.
Related papers
- On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Improving the State of the Art for Training Human-AI Teams: Technical
Report #2 -- Results of Researcher Knowledge Elicitation Survey [0.0]
Sonalysts has begun an internal initiative to explore the training of Human-AI teams.
The first step in this effort is to develop a Synthetic Task Environment (STE) that is capable of facilitating research on Human-AI teams.
arXiv Detail & Related papers (2023-08-29T13:54:32Z) - Coordinated Science Laboratory 70th Anniversary Symposium: The Future of
Computing [80.72844751804166]
In 2021, the Coordinated Science Laboratory CSL hosted the Future of Computing Symposium to celebrate its 70th anniversary.
We summarize the major technological points, insights, and directions that speakers brought forward during the symposium.
Participants discussed topics related to new computing paradigms, technologies, algorithms, behaviors, and research challenges to be expected in the future.
arXiv Detail & Related papers (2022-10-04T17:32:27Z) - An Uncommon Task: Participatory Design in Legal AI [64.54460979588075]
We examine a notable yet understudied AI design process in the legal domain that took place over a decade ago.
We show how an interactive simulation methodology allowed computer scientists and lawyers to become co-designers.
arXiv Detail & Related papers (2022-03-08T15:46:52Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - Students Programming Competitions as an Educational Tool and a
Motivational Incentive to Students [0.0]
We report on student programming competition results by students from the Computer Science Department (COSC) of Okanagan College (OC)
We found that some freshmen and sophomore students in diploma and degree programs are very capable and eager to be involved in applied research projects as early as the second semester.
Students reported that participation in competitions give them motivation to effectively learn in their programming courses, inspire them to learn deeper and more thoroughly, and help them achieve better results in their classes.
arXiv Detail & Related papers (2021-05-27T04:53:18Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z) - Learnings from Frontier Development Lab and SpaceML -- AI Accelerators
for NASA and ESA [57.06643156253045]
Research with AI and ML technologies lives in a variety of settings with often asynchronous goals and timelines.
We perform a case study of the Frontier Development Lab (FDL), an AI accelerator under a public-private partnership from NASA and ESA.
FDL research follows principled practices that are grounded in responsible development, conduct, and dissemination of AI research.
arXiv Detail & Related papers (2020-11-09T21:23:03Z) - A narrowing of AI research? [0.0]
We study the evolution of the thematic diversity of AI research in academia and the private sector.
We measure the influence of private companies in AI research through the citations they receive and their collaborations with other institutions.
arXiv Detail & Related papers (2020-09-22T08:23:56Z) - Evolving Methods for Evaluating and Disseminating Computing Research [4.0318506932466445]
Social and technical trends have significantly changed methods for evaluating and disseminating computing research.
Traditional venues for reviewing and publishing, such as conferences and journals, worked effectively in the past.
Many conferences have seen large increases in the number of submissions.
Dis dissemination of research ideas has become dramatically through publication venues such as arXiv.org and social media networks.
arXiv Detail & Related papers (2020-07-02T16:50:28Z) - Undergraduate Student Research With Low Faculty Cost [1.90365714903665]
Many programs aimed at introducing undergraduates to research are structured like graduate research programs.
We have started a pilot program in our department where a larger number of students work with a single faculty member.
Students report that they develop a better understanding of what research in Computer Science is.
arXiv Detail & Related papers (2020-03-10T23:54:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.