Uncertainty Quantification for Gradient-based Explanations in Neural Networks
- URL: http://arxiv.org/abs/2403.17224v1
- Date: Mon, 25 Mar 2024 21:56:02 GMT
- Title: Uncertainty Quantification for Gradient-based Explanations in Neural Networks
- Authors: Mihir Mulye, Matias Valdenegro-Toro,
- Abstract summary: We propose a pipeline to ascertain the explanation uncertainty of neural networks.
We use this pipeline to produce explanation distributions for the CIFAR-10, FER+, and California Housing datasets.
We compute modified pixel insertion/deletion metrics to evaluate the quality of the generated explanations.
- Score: 6.9060054915724
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Explanation methods help understand the reasons for a model's prediction. These methods are increasingly involved in model debugging, performance optimization, and gaining insights into the workings of a model. With such critical applications of these methods, it is imperative to measure the uncertainty associated with the explanations generated by these methods. In this paper, we propose a pipeline to ascertain the explanation uncertainty of neural networks by combining uncertainty estimation methods and explanation methods. We use this pipeline to produce explanation distributions for the CIFAR-10, FER+, and California Housing datasets. By computing the coefficient of variation of these distributions, we evaluate the confidence in the explanation and determine that the explanations generated using Guided Backpropagation have low uncertainty associated with them. Additionally, we compute modified pixel insertion/deletion metrics to evaluate the quality of the generated explanations.
Related papers
- Selective Explanations [14.312717332216073]
A machine learning model is trained to predict feature attribution scores with only one inference.
Despite their efficiency, amortized explainers can produce inaccurate predictions and misleading explanations.
We propose selective explanations, a novel feature attribution method that detects when amortized explainers generate low-quality explanations.
arXiv Detail & Related papers (2024-05-29T23:08:31Z) - Estimation of Concept Explanations Should be Uncertainty Aware [39.598213804572396]
We study a specific kind called Concept Explanations, where the goal is to interpret a model using human-understandable concepts.
Although popular for their easy interpretation, concept explanations are known to be noisy.
We propose an uncertainty-aware Bayesian estimation method to address these issues, which readily improved the quality of explanations.
arXiv Detail & Related papers (2023-12-13T11:17:27Z) - Evaluating the Robustness of Interpretability Methods through
Explanation Invariance and Equivariance [72.50214227616728]
Interpretability methods are valuable only if their explanations faithfully describe the explained model.
We consider neural networks whose predictions are invariant under a specific symmetry group.
arXiv Detail & Related papers (2023-04-13T17:59:03Z) - Interpretations Steered Network Pruning via Amortized Inferred Saliency
Maps [85.49020931411825]
Convolutional Neural Networks (CNNs) compression is crucial to deploying these models in edge devices with limited resources.
We propose to address the channel pruning problem from a novel perspective by leveraging the interpretations of a model to steer the pruning process.
We tackle this challenge by introducing a selector model that predicts real-time smooth saliency masks for pruned models.
arXiv Detail & Related papers (2022-09-07T01:12:11Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - EDDA: Explanation-driven Data Augmentation to Improve Model and
Explanation Alignment [12.729179495550557]
We seek a methodology that can improve alignment between model predictions and explanation method.
We achieve this through a novel explanation-driven data augmentation (EDDA) method.
This is based on the simple motivating principle that occluding salient regions for the model prediction should decrease the model confidence in the prediction.
arXiv Detail & Related papers (2021-05-29T00:42:42Z) - Building Reliable Explanations of Unreliable Neural Networks: Locally
Smoothing Perspective of Model Interpretation [0.0]
We present a novel method for reliably explaining the predictions of neural networks.
Our method is built on top of the assumption of smooth landscape in a loss function of the model prediction.
arXiv Detail & Related papers (2021-03-26T08:52:11Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - How Much Can I Trust You? -- Quantifying Uncertainties in Explaining
Neural Networks [19.648814035399013]
Explainable AI (XAI) aims to provide interpretations for predictions made by learning machines, such as deep neural networks.
We propose a new framework that allows to convert any arbitrary explanation method for neural networks into an explanation method for Bayesian neural networks.
We demonstrate the effectiveness and usefulness of our approach extensively in various experiments.
arXiv Detail & Related papers (2020-06-16T08:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.