Incoherent GRAPE (inGRAPE) for optimization of quantum systems with environmentally assisted control
- URL: http://arxiv.org/abs/2403.17388v1
- Date: Tue, 26 Mar 2024 05:13:26 GMT
- Title: Incoherent GRAPE (inGRAPE) for optimization of quantum systems with environmentally assisted control
- Authors: Vadim Petruhanov, Alexander Pechen,
- Abstract summary: We discuss applications of incoherent GRAPE method to high fidelity gate generation for open one- and two-qubit systems.
For a qutrit, a formulation of the environment-assisted incoherent control with time-dependent decoherence rates is provided.
- Score: 51.3422222472898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we review several results on development and application of incoherent version of GRAPE (Gradient Ascent Pulse Engineering) approach, inGRAPE, to optimization for open quantum systems driven by both coherent and incoherent controls. In the incoherent control approach, the environment serves as a control together with coherent field, and decoherence rates become generally time-dependent. For a qubit, explicit analytic expressions for evolution of the density matrix were obtained by solving a cubic equation via Cardano method. We discuss applications of incoherent GRAPE method to high fidelity gate generation for open one- and two-qubit systems and surprising properties of the underlying control landscapes, forming two groups - smooth single peak landscapes for Hadamard, C-NOT and C-Z gates, and more complicated with two peaks for T (or $\pi/8$) gate. For a qutrit, a formulation of the environment-assisted incoherent control with time-dependent decoherence rates is provided.
Related papers
- Generation of C-NOT, SWAP, and C-Z Gates for Two Qubits Using Coherent
and Incoherent Controls and Stochastic Optimization [56.47577824219207]
We consider a general form of the dynamics of open quantum systems determined by the Gorini-Kossakowsky-Sudarchhan-Lindblad type master equation.
We analyze the control problems of generating two-qubit C-NOT, SWAP, and C-Z gates using piecewise constant controls and optimization.
arXiv Detail & Related papers (2023-12-09T17:55:47Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Optimal control for state preparation in two-qubit open quantum systems
driven by coherent and incoherent controls via GRAPE approach [77.34726150561087]
We consider a model of two qubits driven by coherent and incoherent time-dependent controls.
The dynamics of the system is governed by a Gorini-Kossakowski-Sudarshan-Lindblad master equation.
We study evolution of the von Neumann entropy, purity, and one-qubit reduced density matrices under optimized controls.
arXiv Detail & Related papers (2022-11-04T15:20:18Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.