LM-Combiner: A Contextual Rewriting Model for Chinese Grammatical Error Correction
- URL: http://arxiv.org/abs/2403.17413v1
- Date: Tue, 26 Mar 2024 06:12:21 GMT
- Title: LM-Combiner: A Contextual Rewriting Model for Chinese Grammatical Error Correction
- Authors: Yixuan Wang, Baoxin Wang, Yijun Liu, Dayong Wu, Wanxiang Che,
- Abstract summary: Over-correction is a critical problem in Chinese grammatical error correction (CGEC) task.
Recent work using model ensemble methods can effectively mitigate over-correction and improve the precision of the GEC system.
We propose the LM-Combiner, a rewriting model that can directly modify the over-correction of GEC system outputs without a model ensemble.
- Score: 49.0746090186582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over-correction is a critical problem in Chinese grammatical error correction (CGEC) task. Recent work using model ensemble methods based on voting can effectively mitigate over-correction and improve the precision of the GEC system. However, these methods still require the output of several GEC systems and inevitably lead to reduced error recall. In this light, we propose the LM-Combiner, a rewriting model that can directly modify the over-correction of GEC system outputs without a model ensemble. Specifically, we train the model on an over-correction dataset constructed through the proposed K-fold cross inference method, which allows it to directly generate filtered sentences by combining the original and the over-corrected text. In the inference stage, we directly take the original sentences and the output results of other systems as input and then obtain the filtered sentences through LM-Combiner. Experiments on the FCGEC dataset show that our proposed method effectively alleviates the over-correction of the original system (+18.2 Precision) while ensuring the error recall remains unchanged. Besides, we find that LM-Combiner still has a good rewriting performance even with small parameters and few training data, and thus can cost-effectively mitigate the over-correction of black-box GEC systems (e.g., ChatGPT).
Related papers
- Efficient and Interpretable Grammatical Error Correction with Mixture of Experts [33.748193858033346]
We propose a mixture-of-experts model, MoECE, for grammatical error correction.
Our model successfully achieves the performance of T5-XL with three times fewer effective parameters.
arXiv Detail & Related papers (2024-10-30T23:27:54Z) - Factual Error Correction for Abstractive Summaries Using Entity
Retrieval [57.01193722520597]
We propose an efficient factual error correction system RFEC based on entities retrieval post-editing process.
RFEC retrieves the evidence sentences from the original document by comparing the sentences with the target summary.
Next, RFEC detects the entity-level errors in the summaries by considering the evidence sentences and substitutes the wrong entities with the accurate entities from the evidence sentences.
arXiv Detail & Related papers (2022-04-18T11:35:02Z) - Error Correction in ASR using Sequence-to-Sequence Models [32.41875780785648]
Post-editing in Automatic Speech Recognition entails automatically correcting common and systematic errors produced by the ASR system.
We propose to use a powerful pre-trained sequence-to-sequence model, BART, to serve as a denoising model.
Experimental results on accented speech data demonstrate that our strategy effectively rectifies a significant number of ASR errors.
arXiv Detail & Related papers (2022-02-02T17:32:59Z) - LM-Critic: Language Models for Unsupervised Grammatical Error Correction [128.9174409251852]
We show how to leverage a pretrained language model (LM) in defining an LM-Critic, which judges a sentence to be grammatical.
We apply this LM-Critic and BIFI along with a large set of unlabeled sentences to bootstrap realistic ungrammatical / grammatical pairs for training a corrector.
arXiv Detail & Related papers (2021-09-14T17:06:43Z) - Tail-to-Tail Non-Autoregressive Sequence Prediction for Chinese
Grammatical Error Correction [49.25830718574892]
We present a new framework named Tail-to-Tail (textbfTtT) non-autoregressive sequence prediction.
Considering that most tokens are correct and can be conveyed directly from source to target, and the error positions can be estimated and corrected.
Experimental results on standard datasets, especially on the variable-length datasets, demonstrate the effectiveness of TtT in terms of sentence-level Accuracy, Precision, Recall, and F1-Measure.
arXiv Detail & Related papers (2021-06-03T05:56:57Z) - Grammatical Error Correction as GAN-like Sequence Labeling [45.19453732703053]
We propose a GAN-like sequence labeling model, which consists of a grammatical error detector as a discriminator and a grammatical error labeler with Gumbel-Softmax sampling as a generator.
Our results on several evaluation benchmarks demonstrate that our proposed approach is effective and improves the previous state-of-the-art baseline.
arXiv Detail & Related papers (2021-05-29T04:39:40Z) - Improving the Efficiency of Grammatical Error Correction with Erroneous
Span Detection and Correction [106.63733511672721]
We propose a novel language-independent approach to improve the efficiency for Grammatical Error Correction (GEC) by dividing the task into two subtasks: Erroneous Span Detection ( ESD) and Erroneous Span Correction (ESC)
ESD identifies grammatically incorrect text spans with an efficient sequence tagging model. ESC leverages a seq2seq model to take the sentence with annotated erroneous spans as input and only outputs the corrected text for these spans.
Experiments show our approach performs comparably to conventional seq2seq approaches in both English and Chinese GEC benchmarks with less than 50% time cost for inference.
arXiv Detail & Related papers (2020-10-07T08:29:11Z) - A Self-Refinement Strategy for Noise Reduction in Grammatical Error
Correction [54.569707226277735]
Existing approaches for grammatical error correction (GEC) rely on supervised learning with manually created GEC datasets.
There is a non-negligible amount of "noise" where errors were inappropriately edited or left uncorrected.
We propose a self-refinement method where the key idea is to denoise these datasets by leveraging the prediction consistency of existing models.
arXiv Detail & Related papers (2020-10-07T04:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.