Integrating Mamba Sequence Model and Hierarchical Upsampling Network for Accurate Semantic Segmentation of Multiple Sclerosis Legion
- URL: http://arxiv.org/abs/2403.17432v1
- Date: Tue, 26 Mar 2024 06:57:50 GMT
- Title: Integrating Mamba Sequence Model and Hierarchical Upsampling Network for Accurate Semantic Segmentation of Multiple Sclerosis Legion
- Authors: Kazi Shahriar Sanjid, Md. Tanzim Hossain, Md. Shakib Shahariar Junayed, Dr. Mohammad Monir Uddin,
- Abstract summary: We introduce Mamba HUNet, a novel architecture tailored for robust and efficient segmentation tasks.
We first converted HUNet into a lighter version, maintaining performance parity and then integrated this lighter HUNet into Mamba HUNet, further enhancing its efficiency.
Experimental results on publicly available Magnetic Resonance Imaging scans, notably in Multiple Sclerosis lesion segmentation, demonstrate Mamba HUNet's effectiveness across diverse segmentation tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating components from convolutional neural networks and state space models in medical image segmentation presents a compelling approach to enhance accuracy and efficiency. We introduce Mamba HUNet, a novel architecture tailored for robust and efficient segmentation tasks. Leveraging strengths from Mamba UNet and the lighter version of Hierarchical Upsampling Network (HUNet), Mamba HUNet combines convolutional neural networks local feature extraction power with state space models long range dependency modeling capabilities. We first converted HUNet into a lighter version, maintaining performance parity and then integrated this lighter HUNet into Mamba HUNet, further enhancing its efficiency. The architecture partitions input grayscale images into patches, transforming them into 1D sequences for processing efficiency akin to Vision Transformers and Mamba models. Through Visual State Space blocks and patch merging layers, hierarchical features are extracted while preserving spatial information. Experimental results on publicly available Magnetic Resonance Imaging scans, notably in Multiple Sclerosis lesion segmentation, demonstrate Mamba HUNet's effectiveness across diverse segmentation tasks. The model's robustness and flexibility underscore its potential in handling complex anatomical structures. These findings establish Mamba HUNet as a promising solution in advancing medical image segmentation, with implications for improving clinical decision making processes.
Related papers
- DAMamba: Vision State Space Model with Dynamic Adaptive Scan [51.81060691414399]
State space models (SSMs) have recently garnered significant attention in computer vision.
We propose Dynamic Adaptive Scan (DAS), a data-driven method that adaptively allocates scanning orders and regions.
Based on DAS, we propose the vision backbone DAMamba, which significantly outperforms current state-of-the-art vision Mamba models in vision tasks.
arXiv Detail & Related papers (2025-02-18T08:12:47Z) - MatIR: A Hybrid Mamba-Transformer Image Restoration Model [95.17418386046054]
We propose a Mamba-Transformer hybrid image restoration model called MatIR.
MatIR cross-cycles the blocks of the Transformer layer and the Mamba layer to extract features.
In the Mamba module, we introduce the Image Inpainting State Space (IRSS) module, which traverses along four scan paths.
arXiv Detail & Related papers (2025-01-30T14:55:40Z) - Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement [54.427965535613886]
Mamba, as a novel state-space model (SSM), has gained widespread application in natural language processing and computer vision.
In this work, we introduce Mamba-SEUNet, an innovative architecture that integrates Mamba with U-Net for SE tasks.
arXiv Detail & Related papers (2024-12-21T13:43:51Z) - MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation [6.673169053236727]
We propose MambaClinix, a novel U-shaped architecture for medical image segmentation.
MambaClinix integrates a hierarchical gated convolutional network with Mamba in an adaptive stage-wise framework.
Our results show that MambaClinix achieves high segmentation accuracy while maintaining low model complexity.
arXiv Detail & Related papers (2024-09-19T07:51:14Z) - MSVM-UNet: Multi-Scale Vision Mamba UNet for Medical Image Segmentation [3.64388407705261]
We propose a Multi-Scale Vision Mamba UNet model for medical image segmentation, termed MSVM-UNet.
Specifically, by introducing multi-scale convolutions in the VSS blocks, we can more effectively capture and aggregate multi-scale feature representations from the hierarchical features of the VMamba encoder.
arXiv Detail & Related papers (2024-08-25T06:20:28Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
We propose a novel hybrid Mamba-Transformer backbone, denoted as MambaVision, which is specifically tailored for vision applications.
Our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features.
We conduct a comprehensive ablation study on the feasibility of integrating Vision Transformers (ViT) with Mamba.
arXiv Detail & Related papers (2024-07-10T23:02:45Z) - LKM-UNet: Large Kernel Vision Mamba UNet for Medical Image Segmentation [9.862277278217045]
In this paper, we introduce a Large Kernel Vision Mamba U-shape Network, or LKM-UNet, for medical image segmentation.
A distinguishing feature of our LKM-UNet is its utilization of large Mamba kernels, excelling in locally spatial modeling compared to small kernel-based CNNs and Transformers.
Comprehensive experiments demonstrate the feasibility and the effectiveness of using large-size Mamba kernels to achieve large receptive fields.
arXiv Detail & Related papers (2024-03-12T05:34:51Z) - Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation [21.1787366866505]
We propose Mamba-UNet, a novel architecture that synergizes the U-Net in medical image segmentation with Mamba's capability.
Mamba-UNet adopts a pure Visual Mamba (VMamba)-based encoder-decoder structure, infused with skip connections to preserve spatial information across different scales of the network.
arXiv Detail & Related papers (2024-02-07T18:33:04Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
This paper introduces a novel Mamba-based model, Swin-UMamba, designed specifically for medical image segmentation tasks.
Swin-UMamba demonstrates superior performance with a large margin compared to CNNs, ViTs, and latest Mamba-based models.
arXiv Detail & Related papers (2024-02-05T18:58:11Z) - U-Mamba: Enhancing Long-range Dependency for Biomedical Image
Segmentation [10.083902382768406]
We introduce U-Mamba, a general-purpose network for biomedical image segmentation.
Inspired by the State Space Sequence Models (SSMs), a new family of deep sequence models, we design a hybrid CNN-SSM block.
We conduct experiments on four diverse tasks, including the 3D abdominal organ segmentation in CT and MR images, instrument segmentation in endoscopy images, and cell segmentation in microscopy images.
arXiv Detail & Related papers (2024-01-09T18:53:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.