WordRobe: Text-Guided Generation of Textured 3D Garments
- URL: http://arxiv.org/abs/2403.17541v2
- Date: Sun, 14 Jul 2024 22:05:06 GMT
- Title: WordRobe: Text-Guided Generation of Textured 3D Garments
- Authors: Astitva Srivastava, Pranav Manu, Amit Raj, Varun Jampani, Avinash Sharma,
- Abstract summary: "WordRobe" is a novel framework for the generation of unposed & textured 3D garment meshes from user-friendly text prompts.
We demonstrate superior performance over current SOTAs for learning 3D garment latent space, garment synthesis, and text-driven texture synthesis.
- Score: 30.614451083408266
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we tackle a new and challenging problem of text-driven generation of 3D garments with high-quality textures. We propose "WordRobe", a novel framework for the generation of unposed & textured 3D garment meshes from user-friendly text prompts. We achieve this by first learning a latent representation of 3D garments using a novel coarse-to-fine training strategy and a loss for latent disentanglement, promoting better latent interpolation. Subsequently, we align the garment latent space to the CLIP embedding space in a weakly supervised manner, enabling text-driven 3D garment generation and editing. For appearance modeling, we leverage the zero-shot generation capability of ControlNet to synthesize view-consistent texture maps in a single feed-forward inference step, thereby drastically decreasing the generation time as compared to existing methods. We demonstrate superior performance over current SOTAs for learning 3D garment latent space, garment interpolation, and text-driven texture synthesis, supported by quantitative evaluation and qualitative user study. The unposed 3D garment meshes generated using WordRobe can be directly fed to standard cloth simulation & animation pipelines without any post-processing.
Related papers
- Meta 3D TextureGen: Fast and Consistent Texture Generation for 3D Objects [54.80813150893719]
We introduce Meta 3D TextureGen: a new feedforward method comprised of two sequential networks aimed at generating high-quality textures in less than 20 seconds.
Our method state-of-the-art results in quality and speed by conditioning a text-to-image model on 3D semantics in 2D space and fusing them into a complete and high-resolution UV texture map.
In addition, we introduce a texture enhancement network that is capable of up-scaling any texture by an arbitrary ratio, producing 4k pixel resolution textures.
arXiv Detail & Related papers (2024-07-02T17:04:34Z) - GarmentDreamer: 3DGS Guided Garment Synthesis with Diverse Geometry and Texture Details [31.92583566128599]
Traditional 3D garment creation is labor-intensive, involving sketching, modeling, UV mapping, and time-consuming processes.
We propose GarmentDreamer, a novel method that leverages 3D Gaussian Splatting (GS) as guidance to generate 3D garment from text prompts.
arXiv Detail & Related papers (2024-05-20T23:54:28Z) - EucliDreamer: Fast and High-Quality Texturing for 3D Models with Depth-Conditioned Stable Diffusion [5.158983929861116]
We present EucliDreamer, a simple and effective method to generate textures for 3D models given text and prompts.
The texture is parametized as an implicit function on the 3D surface, which is optimized with the Score Distillation Sampling (SDS) process and differentiable rendering.
arXiv Detail & Related papers (2024-04-16T04:44:16Z) - DressCode: Autoregressively Sewing and Generating Garments from Text Guidance [61.48120090970027]
DressCode aims to democratize design for novices and offer immense potential in fashion design, virtual try-on, and digital human creation.
We first introduce SewingGPT, a GPT-based architecture integrating cross-attention with text-conditioned embedding to generate sewing patterns.
We then tailor a pre-trained Stable Diffusion to generate tile-based Physically-based Rendering (PBR) textures for the garments.
arXiv Detail & Related papers (2024-01-29T16:24:21Z) - Control3D: Towards Controllable Text-to-3D Generation [107.81136630589263]
We present a text-to-3D generation conditioning on the additional hand-drawn sketch, namely Control3D.
A 2D conditioned diffusion model (ControlNet) is remoulded to guide the learning of 3D scene parameterized as NeRF.
We exploit a pre-trained differentiable photo-to-sketch model to directly estimate the sketch of the rendered image over synthetic 3D scene.
arXiv Detail & Related papers (2023-11-09T15:50:32Z) - ATT3D: Amortized Text-to-3D Object Synthesis [78.96673650638365]
We amortize optimization over text prompts by training on many prompts simultaneously with a unified model, instead of separately.
Our framework - Amortized text-to-3D (ATT3D) - enables knowledge-sharing between prompts to generalize to unseen setups and smooths between text for novel assets and simple animations.
arXiv Detail & Related papers (2023-06-06T17:59:10Z) - TAPS3D: Text-Guided 3D Textured Shape Generation from Pseudo Supervision [114.56048848216254]
We present a novel framework, TAPS3D, to train a text-guided 3D shape generator with pseudo captions.
Based on rendered 2D images, we retrieve relevant words from the CLIP vocabulary and construct pseudo captions using templates.
Our constructed captions provide high-level semantic supervision for generated 3D shapes.
arXiv Detail & Related papers (2023-03-23T13:53:16Z) - TEXTure: Text-Guided Texturing of 3D Shapes [71.13116133846084]
We present TEXTure, a novel method for text-guided editing, editing, and transfer of textures for 3D shapes.
We define a trimap partitioning process that generates seamless 3D textures without requiring explicit surface textures.
arXiv Detail & Related papers (2023-02-03T13:18:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.