On the Benefits of Over-parameterization for Out-of-Distribution Generalization
- URL: http://arxiv.org/abs/2403.17592v1
- Date: Tue, 26 Mar 2024 11:01:53 GMT
- Title: On the Benefits of Over-parameterization for Out-of-Distribution Generalization
- Authors: Yifan Hao, Yong Lin, Difan Zou, Tong Zhang,
- Abstract summary: We investigate the performance of a machine learning model in terms of Out-of-Distribution (OOD) loss under benign overfitting conditions.
We show that further increasing the model's parameterization can significantly reduce the OOD loss.
These insights explain the empirical phenomenon of enhanced OOD generalization through model ensembles.
- Score: 28.961538657831788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, machine learning models have achieved success based on the independently and identically distributed assumption. However, this assumption can be easily violated in real-world applications, leading to the Out-of-Distribution (OOD) problem. Understanding how modern over-parameterized DNNs behave under non-trivial natural distributional shifts is essential, as current theoretical understanding is insufficient. Existing theoretical works often provide meaningless results for over-parameterized models in OOD scenarios or even contradict empirical findings. To this end, we are investigating the performance of the over-parameterized model in terms of OOD generalization under the general benign overfitting conditions. Our analysis focuses on a random feature model and examines non-trivial natural distributional shifts, where the benign overfitting estimators demonstrate a constant excess OOD loss, despite achieving zero excess in-distribution (ID) loss. We demonstrate that in this scenario, further increasing the model's parameterization can significantly reduce the OOD loss. Intuitively, the variance term of ID loss remains low due to orthogonality of long-tail features, meaning overfitting noise during training generally doesn't raise testing loss. However, in OOD cases, distributional shift increases the variance term. Thankfully, the inherent shift is unrelated to individual x, maintaining the orthogonality of long-tail features. Expanding the hidden dimension can additionally improve this orthogonality by mapping the features into higher-dimensional spaces, thereby reducing the variance term. We further show that model ensembles also improve OOD loss, akin to increasing model capacity. These insights explain the empirical phenomenon of enhanced OOD generalization through model ensembles, supported by consistent simulations with theoretical results.
Related papers
- Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Mixture Data for Training Cannot Ensure Out-of-distribution Generalization [21.801115344132114]
We show that increasing the size of training data does not always lead to a reduction in the test generalization error.
In this work, we quantitatively redefine OOD data as those situated outside the convex hull of mixed training data.
Our proof of the new risk bound agrees that the efficacy of well-trained models can be guaranteed for unseen data.
arXiv Detail & Related papers (2023-12-25T11:00:38Z) - Diagnosing and Rectifying Fake OOD Invariance: A Restructured Causal
Approach [51.012396632595554]
Invariant representation learning (IRL) encourages the prediction from invariant causal features to labels de-confounded from the environments.
Recent theoretical results verified that some causal features recovered by IRLs merely pretend domain-invariantly in the training environments but fail in unseen domains.
We develop an approach based on conditional mutual information with respect to RS-SCM, then rigorously rectify the spurious and fake invariant effects.
arXiv Detail & Related papers (2023-12-15T12:58:05Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Towards Calibrated Robust Fine-Tuning of Vision-Language Models [97.19901765814431]
This work proposes a robust fine-tuning method that improves both OOD accuracy and confidence calibration simultaneously in vision language models.
We show that both OOD classification and OOD calibration errors have a shared upper bound consisting of two terms of ID data.
Based on this insight, we design a novel framework that conducts fine-tuning with a constrained multimodal contrastive loss enforcing a larger smallest singular value.
arXiv Detail & Related papers (2023-11-03T05:41:25Z) - Curve Your Enthusiasm: Concurvity Regularization in Differentiable
Generalized Additive Models [5.519653885553456]
Generalized Additive Models (GAMs) have recently experienced a resurgence in popularity due to their interpretability.
We show how concurvity can severly impair the interpretability of GAMs.
We propose a remedy: a conceptually simple, yet effective regularizer which penalizes pairwise correlations of the non-linearly transformed feature variables.
arXiv Detail & Related papers (2023-05-19T06:55:49Z) - Exploring Optimal Substructure for Out-of-distribution Generalization
via Feature-targeted Model Pruning [23.938392334438582]
We propose a novel Spurious Feature-targeted model Pruning framework, dubbed SFP, to automatically explore invariant substructures.
SFP can significantly outperform both structure-based and non-structure OOD generalization SOTAs, with accuracy improvement up to 4.72% and 23.35%, respectively.
arXiv Detail & Related papers (2022-12-19T13:51:06Z) - Relating Regularization and Generalization through the Intrinsic
Dimension of Activations [11.00580615194563]
We show that common regularization techniques uniformly decrease the last-layer ID (LLID) of validation set activations for image classification models.
We also examine the LLID over the course of training of models that exhibit grokking.
arXiv Detail & Related papers (2022-11-23T19:00:00Z) - Re-parameterizing VAEs for stability [1.90365714903665]
We propose a theoretical approach towards the training numerical stability of Variational AutoEncoders (VAE)
Our work is motivated by recent studies empowering VAEs to reach state of the art generative results on complex image datasets.
We show that by implementing small changes to the way we parameterize the Normal distributions on which they rely, VAEs can securely be trained.
arXiv Detail & Related papers (2021-06-25T16:19:09Z) - Loss function based second-order Jensen inequality and its application
to particle variational inference [112.58907653042317]
Particle variational inference (PVI) uses an ensemble of models as an empirical approximation for the posterior distribution.
PVI iteratively updates each model with a repulsion force to ensure the diversity of the optimized models.
We derive a novel generalization error bound and show that it can be reduced by enhancing the diversity of models.
arXiv Detail & Related papers (2021-06-09T12:13:51Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.