An Extension-based Approach for Computing and Verifying Preferences in Abstract Argumentation
- URL: http://arxiv.org/abs/2403.17653v1
- Date: Tue, 26 Mar 2024 12:36:11 GMT
- Title: An Extension-based Approach for Computing and Verifying Preferences in Abstract Argumentation
- Authors: Quratul-ain Mahesar, Nir Oren, Wamberto W. Vasconcelos,
- Abstract summary: We present an extension-based approach for computing and verifying preferences in an abstract argumentation system.
We show that the complexity of computing sets of preferences is exponential in the number of arguments.
We present novel algorithms for verifying (i.e., assessing) the computed preferences.
- Score: 1.7065454553786665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an extension-based approach for computing and verifying preferences in an abstract argumentation system. Although numerous argumentation semantics have been developed previously for identifying acceptable sets of arguments from an argumentation framework, there is a lack of justification behind their acceptability based on implicit argument preferences. Preference-based argumentation frameworks allow one to determine what arguments are justified given a set of preferences. Our research considers the inverse of the standard reasoning problem, i.e., given an abstract argumentation framework and a set of justified arguments, we compute what the possible preferences over arguments are. Furthermore, there is a need to verify (i.e., assess) that the computed preferences would lead to the acceptable sets of arguments. This paper presents a novel approach and algorithm for exhaustively computing and enumerating all possible sets of preferences (restricted to three identified cases) for a conflict-free set of arguments in an abstract argumentation framework. We prove the soundness, completeness and termination of the algorithm. The research establishes that preferences are determined using an extension-based approach after the evaluation phase (acceptability of arguments) rather than stated beforehand. In this work, we focus our research study on grounded, preferred and stable semantics. We show that the complexity of computing sets of preferences is exponential in the number of arguments, and thus, describe an approximate approach and algorithm to compute the preferences. Furthermore, we present novel algorithms for verifying (i.e., assessing) the computed preferences. We provide details of the implementation of the algorithms (source code has been made available), various experiments performed to evaluate the algorithms and the analysis of the results.
Related papers
- A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
We present a novel framework, which uses an Inductive Logic Programming approach to learn the acceptability semantics for several abstract and structured argumentation frameworks in an interpretable way.
Our framework outperforms existing argumentation solvers, thus opening up new future research directions in the area of formal argumentation and human-machine dialogues.
arXiv Detail & Related papers (2023-10-18T20:18:05Z) - Ranking-based Argumentation Semantics Applied to Logical Argumentation
(full version) [2.9005223064604078]
We investigate the behaviour of ranking-based semantics for structured argumentation.
We show that a wide class of ranking-based semantics gives rise to so-called culpability measures.
arXiv Detail & Related papers (2023-07-31T15:44:33Z) - Many-valued Argumentation, Conditionals and a Probabilistic Semantics
for Gradual Argumentation [3.9571744700171743]
We propose a general approach to define a many-valued preferential interpretation of gradual argumentation semantics.
As a proof of concept, in the finitely-valued case, an Answer set Programming approach is proposed for conditional reasoning.
The paper also develops and discusses a probabilistic semantics for gradual argumentation, which builds on the many-valued conditional semantics.
arXiv Detail & Related papers (2022-12-14T22:10:46Z) - Admissibility in Strength-based Argumentation: Complexity and Algorithms
(Extended Version with Proofs) [1.5828697880068698]
We study the adaptation of admissibility-based semantics to Strength-based Argumentation Frameworks (StrAFs)
Especially, we show that the strong admissibility defined in the literature does not satisfy a desirable property, namely Dung's fundamental lemma.
We propose a translation in pseudo-Boolean constraints for computing (strong and weak) extensions.
arXiv Detail & Related papers (2022-07-05T18:42:04Z) - Rationale-Augmented Ensembles in Language Models [53.45015291520658]
We reconsider rationale-augmented prompting for few-shot in-context learning.
We identify rationale sampling in the output space as the key component to robustly improve performance.
We demonstrate that rationale-augmented ensembles achieve more accurate and interpretable results than existing prompting approaches.
arXiv Detail & Related papers (2022-07-02T06:20:57Z) - Analytical Solutions for the Inverse Problem within Gradual Semantics [3.957174470017176]
We show how an analytical approach can be used to solve the inverse problem in gradual semantics.
Unlike the current state-of-the-art, such an approach can rapidly find a solution, and is guaranteed to do so.
arXiv Detail & Related papers (2022-03-02T15:55:10Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
We present an approach for representing abstract argumentation frameworks based on an encoding into classical higher-order logic.
This provides a uniform framework for computer-assisted assessment of abstract argumentation frameworks using interactive and automated reasoning tools.
arXiv Detail & Related papers (2021-10-18T10:45:59Z) - Abstract Reasoning via Logic-guided Generation [65.92805601327649]
Abstract reasoning, i.e., inferring complicated patterns from given observations, is a central building block of artificial general intelligence.
This paper aims to design a framework for the latter approach and bridge the gap between artificial and human intelligence.
We propose logic-guided generation (LoGe), a novel generative DNN framework that reduces abstract reasoning as an optimization problem in propositional logic.
arXiv Detail & Related papers (2021-07-22T07:28:24Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Preference Elicitation in Assumption-Based Argumentation [3.0323642294813355]
We consider an inverse of the standard reasoning problem, seeking to identify what preferences over assumptions could lead to a given set of conclusions being drawn.
We present an algorithm which computes and enumerates all possible sets of preferences over the assumptions in the system from which a desired conflict free set of conclusions can be obtained.
arXiv Detail & Related papers (2020-05-12T12:31:27Z) - Invariant Rationalization [84.1861516092232]
A typical rationalization criterion, i.e. maximum mutual information (MMI), finds the rationale that maximizes the prediction performance based only on the rationale.
We introduce a game-theoretic invariant rationalization criterion where the rationales are constrained to enable the same predictor to be optimal across different environments.
We show both theoretically and empirically that the proposed rationales can rule out spurious correlations, generalize better to different test scenarios, and align better with human judgments.
arXiv Detail & Related papers (2020-03-22T00:50:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.