Tiny Models are the Computational Saver for Large Models
- URL: http://arxiv.org/abs/2403.17726v3
- Date: Wed, 17 Jul 2024 00:12:28 GMT
- Title: Tiny Models are the Computational Saver for Large Models
- Authors: Qingyuan Wang, Barry Cardiff, Antoine Frappé, Benoit Larras, Deepu John,
- Abstract summary: This paper introduces TinySaver, an early-exit-like dynamic model compression approach which employs tiny models to substitute large models adaptively.
Our evaluation of this approach in ImageNet-1k classification demonstrates its potential to reduce the number of compute operations by up to 90%, with only negligible losses in performance.
- Score: 1.8350044465969415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces TinySaver, an early-exit-like dynamic model compression approach which employs tiny models to substitute large models adaptively. Distinct from traditional compression techniques, dynamic methods like TinySaver can leverage the difficulty differences to allow certain inputs to complete their inference processes early, thereby conserving computational resources. Most existing early exit designs are implemented by attaching additional network branches to the model's backbone. Our study, however, reveals that completely independent tiny models can replace a substantial portion of the larger models' job with minimal impact on performance. Employing them as the first exit can remarkably enhance computational efficiency. By searching and employing the most appropriate tiny model as the computational saver for a given large model, the proposed approaches work as a novel and generic method to model compression. This finding will help the research community in exploring new compression methods to address the escalating computational demands posed by rapidly evolving AI models. Our evaluation of this approach in ImageNet-1k classification demonstrates its potential to reduce the number of compute operations by up to 90\%, with only negligible losses in performance, across various modern vision models.
Related papers
- Single Parent Family: A Spectrum of Family Members from a Single Pre-Trained Foundation Model [20.054342930450055]
This paper introduces a novel method of Progressive Low Rank Decomposition (PLRD) tailored for the compression of large language models.
PLRD allows for significant reductions in computational overhead and energy consumption.
Our findings suggest that PLRD could set a new standard for the efficient scaling of LLMs.
arXiv Detail & Related papers (2024-06-28T15:27:57Z) - Lossless and Near-Lossless Compression for Foundation Models [11.307357041746865]
We investigate the source of model compressibility, introduce compression variants tailored for models and categorize models to compressibility groups.
We estimate that these methods could save over an ExaByte per month of network traffic downloaded from a large model hub like HuggingFace.
arXiv Detail & Related papers (2024-04-05T16:52:55Z) - Model Compression and Efficient Inference for Large Language Models: A
Survey [20.199282252344396]
Large language models have two prominent characteristics compared to smaller models.
The most notable aspect of large models is the very high cost associated with model finetuning or training.
Large models emphasize versatility and generalization rather than performance on a single task.
arXiv Detail & Related papers (2024-02-15T06:58:30Z) - PELA: Learning Parameter-Efficient Models with Low-Rank Approximation [16.9278983497498]
We propose a novel method for increasing the parameter efficiency of pre-trained models by introducing an intermediate pre-training stage.
This allows for direct and efficient utilization of the low-rank model for downstream fine-tuning tasks.
arXiv Detail & Related papers (2023-10-16T07:17:33Z) - Reusing Pretrained Models by Multi-linear Operators for Efficient
Training [65.64075958382034]
Training large models from scratch usually costs a substantial amount of resources.
Recent studies such as bert2BERT and LiGO have reused small pretrained models to initialize a large model.
We propose a method that linearly correlates each weight of the target model to all the weights of the pretrained model.
arXiv Detail & Related papers (2023-10-16T06:16:47Z) - Predicting on the Edge: Identifying Where a Larger Model Does Better [61.793778186198864]
We show that large models have the largest improvement on examples where the small model is most uncertain.
We show that a switcher model which defers examples to a larger model when a small model is uncertain can achieve striking improvements in performance and resource usage.
arXiv Detail & Related papers (2022-02-15T18:53:14Z) - Top-KAST: Top-K Always Sparse Training [50.05611544535801]
We propose Top-KAST, a method that preserves constant sparsity throughout training.
We show that it performs comparably to or better than previous works when training models on the established ImageNet benchmark.
In addition to our ImageNet results, we also demonstrate our approach in the domain of language modeling.
arXiv Detail & Related papers (2021-06-07T11:13:05Z) - Self-Supervised GAN Compression [32.21713098893454]
We show that a standard model compression technique, weight pruning, cannot be applied to GANs using existing methods.
We then develop a self-supervised compression technique which uses the trained discriminator to supervise the training of a compressed generator.
We show that this framework has a compelling performance to high degrees of sparsity, can be easily applied to new tasks and models, and enables meaningful comparisons between different pruning granularities.
arXiv Detail & Related papers (2020-07-03T04:18:54Z) - Dynamic Model Pruning with Feedback [64.019079257231]
We propose a novel model compression method that generates a sparse trained model without additional overhead.
We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models.
arXiv Detail & Related papers (2020-06-12T15:07:08Z) - When Ensembling Smaller Models is More Efficient than Single Large
Models [52.38997176317532]
We show that ensembles can outperform single models with both higher accuracy and requiring fewer total FLOPs to compute.
This presents an interesting observation that output diversity in ensembling can often be more efficient than training larger models.
arXiv Detail & Related papers (2020-05-01T18:56:18Z) - Train Large, Then Compress: Rethinking Model Size for Efficient Training
and Inference of Transformers [94.43313684188819]
We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute.
We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps.
This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models.
arXiv Detail & Related papers (2020-02-26T21:17:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.