Climate Downscaling: A Deep-Learning Based Super-resolution Model of Precipitation Data with Attention Block and Skip Connections
- URL: http://arxiv.org/abs/2403.17847v1
- Date: Tue, 26 Mar 2024 16:36:50 GMT
- Title: Climate Downscaling: A Deep-Learning Based Super-resolution Model of Precipitation Data with Attention Block and Skip Connections
- Authors: Chia-Hao Chiang, Zheng-Han Huang, Liwen Liu, Hsin-Chien Liang, Yi-Chi Wang, Wan-Ling Tseng, Chao Wang, Che-Ta Chen, Ko-Chih Wang,
- Abstract summary: In Taiwan, although the average annual precipitation is up to 2,500 millimeter (mm), the water allocation for each person is lower than the global average.
We propose a deep convolutional neural network with skip connections, attention blocks, and auxiliary data concatenation, in order to downscale the low-resolution precipitation data into high-resolution one.
- Score: 2.419452632652106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human activities accelerate consumption of fossil fuels and produce greenhouse gases, resulting in urgent issues today: global warming and the climate change. These indirectly cause severe natural disasters, plenty of lives suffering and huge losses of agricultural properties. To mitigate impacts on our lands, scientists are developing renewable, reusable, and clean energies and climatologists are trying to predict the extremes. Meanwhile, governments are publicizing resource-saving policies for a more eco-friendly society and arousing environment awareness. One of the most influencing factors is the precipitation, bringing condensed water vapor onto lands. Water resources are the most significant but basic needs in society, not only supporting our livings, but also economics. In Taiwan, although the average annual precipitation is up to 2,500 millimeter (mm), the water allocation for each person is lower than the global average due to drastically geographical elevation changes and uneven distribution through the year. Thus, it is crucial to track and predict the rainfall to make the most use of it and to prevent the floods. However, climate models have limited resolution and require intensive computational power for local-scale use. Therefore, we proposed a deep convolutional neural network with skip connections, attention blocks, and auxiliary data concatenation, in order to downscale the low-resolution precipitation data into high-resolution one. Eventually, we compare with other climate downscaling methods and show better performance in metrics of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Pearson Correlation, structural similarity index (SSIM), and forecast indicators.
Related papers
- FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition.
Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages.
Our study focuses on Central Eurasia, a region burdened with economic and social challenges.
arXiv Detail & Related papers (2023-10-24T15:15:28Z) - CMIP X-MOS: Improving Climate Models with Extreme Model Output
Statistics [40.517778024431244]
We introduce Extreme Model Output Statistics (X-MOS) to improve predictions of natural disaster risks.
This approach utilizes deep regression techniques to precisely map CMIP model outputs to real measurements obtained from weather stations.
In contrast to previous research, our study places a strong emphasis on enhancing the estimation of the tails of future climate parameter distributions.
arXiv Detail & Related papers (2023-10-24T13:18:53Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - A Multi-Scale Deep Learning Framework for Projecting Weather Extremes [3.3598755777055374]
Weather extremes are a major societal and economic hazard, claiming thousands of lives and causing billions of dollars in damage every year.
General circulation models (GCMs), which are currently the primary tool for climate projections, cannot characterize weather extremes accurately.
We present a multi-resolution deep-learning framework that corrects a GCM's biases by matching low-order and tail statistics of its output with observations at coarse scales.
We use the proposed framework to generate statistically realistic realizations of the climate over Western Europe from a simple GCM corrected using observational atmospheric reanalysis.
arXiv Detail & Related papers (2022-10-21T17:47:05Z) - ClimateGAN: Raising Climate Change Awareness by Generating Images of
Floods [89.61670857155173]
We present our solution to simulate photo-realistic floods on authentic images.
We propose ClimateGAN, a model that leverages both simulated and real data for unsupervised domain adaptation and conditional image generation.
arXiv Detail & Related papers (2021-10-06T15:54:57Z) - The Power of Language: Understanding Sentiment Towards the Climate
Emergency using Twitter Data [0.0]
It could be speculated that there is a relationship between Crude Oil Futures and sentiment towards the Climate Emergency.
This study shows that it is possible to split the conversation surrounding the Climate Emergency into 3 distinct topics.
arXiv Detail & Related papers (2021-01-25T19:51:10Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
In recent years, companies have increasingly been aiming to both mitigate their environmental impact and adapt to the changing climate context.
This is reported via increasingly exhaustive reports, which cover many types of climate risks and exposures under the umbrella of Environmental, Social, and Governance (ESG)
We present this tool and the methodology that we used to develop it in the present article.
arXiv Detail & Related papers (2020-11-03T21:22:42Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
We create a deep learning pipeline that generates visual satellite images of current and future coastal flooding.
By evaluating the imagery relative to physics-based flood maps, we find that our proposed framework outperforms baseline models in both physical-consistency and photorealism.
While this work focused on the visualization of coastal floods, we envision the creation of a global visualization of how climate change will shape our earth.
arXiv Detail & Related papers (2020-10-16T02:15:34Z) - Augmented Convolutional LSTMs for Generation of High-Resolution Climate
Change Projections [1.7503398807380832]
We present auxiliary informed-temporal neural architecture for statistical downscaling.
Current study performs daily downscaling of precipitation variable from an ESM output at 1.15 degrees (115 km) to 0.25 degrees (25 km) over the world's most climatically diversified country, India.
arXiv Detail & Related papers (2020-09-23T17:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.