Supervised Multiple Kernel Learning approaches for multi-omics data integration
- URL: http://arxiv.org/abs/2403.18355v2
- Date: Tue, 03 Dec 2024 14:07:34 GMT
- Title: Supervised Multiple Kernel Learning approaches for multi-omics data integration
- Authors: Mitja Briscik, Gabriele Tazza, Marie-Agnes Dillies, László Vidács, Sébastien Dejean,
- Abstract summary: Multiple kernel learning (MKL) has shown to be a flexible and valid approach to consider the diverse nature of multi-omics inputs.
We provide novel MKL approaches based on different kernel fusion strategies.
Results show that MKL-based models can outperform more complex, state-of-the-art, supervised multi-omics integrative approaches.
- Score: 1.3032276477872158
- License:
- Abstract: Advances in high-throughput technologies have originated an ever-increasing availability of omics datasets. The integration of multiple heterogeneous data sources is currently an issue for biology and bioinformatics. Multiple kernel learning (MKL) has shown to be a flexible and valid approach to consider the diverse nature of multi-omics inputs, despite being an underused tool in genomic data mining. We provide novel MKL approaches based on different kernel fusion strategies. To learn from the meta-kernel of input kernels, we adapted unsupervised integration algorithms for supervised tasks with support vector machines. We also tested deep learning architectures for kernel fusion and classification. The results show that MKL-based models can outperform more complex, state-of-the-art, supervised multi-omics integrative approaches. Multiple kernel learning offers a natural framework for predictive models in multi-omics data. It proved to provide a fast and reliable solution that can compete with and outperform more complex architectures. Our results offer a direction for bio-data mining research, biomarker discovery and further development of methods for heterogeneous data integration.
Related papers
- UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
This paper presents the Hybrid Early-fusion Attention Learning Network (HEALNet), a flexible multimodal fusion architecture.
We conduct multimodal survival analysis on Whole Slide Images and Multi-omic data on four cancer datasets from The Cancer Genome Atlas (TCGA)
HEALNet achieves state-of-the-art performance compared to other end-to-end trained fusion models.
arXiv Detail & Related papers (2023-11-15T17:06:26Z) - Building Flexible, Scalable, and Machine Learning-ready Multimodal
Oncology Datasets [17.774341783844026]
This work proposes Multimodal Integration of Oncology Data System (MINDS)
MINDS is a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate data from public sources.
By harmonizing multimodal data, MINDS aims to potentially empower researchers with greater analytical ability.
arXiv Detail & Related papers (2023-09-30T15:44:39Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self
Attention for multi-omics integration with incomplete multi-omics data [47.2764293508916]
Integration of heterogeneous and high-dimensional multi-omics data is becoming increasingly important in understanding genetic data.
One obstacle faced when performing multi-omics data integration is the existence of unpaired multi-omics data due to instrument sensitivity and cost.
We propose a deep learning method for multi-omics integration with incomplete data by Cross-omics Linked unified embedding with Contrastive Learning and Self Attention.
arXiv Detail & Related papers (2023-04-12T00:22:18Z) - CustOmics: A versatile deep-learning based strategy for multi-omics
integration [0.0]
This paper presents a novel strategy to build a customizable autoencoder model that adapts to the dataset used in the case of high-dimensional multi-source integration.
We will assess the impact of integration strategies on the latent representation and combine the best strategies to propose a new method, CustOmics.
arXiv Detail & Related papers (2022-09-12T14:20:29Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z) - A generalized kernel machine approach to identify higher-order composite
effects in multi-view datasets [4.579719459619913]
We propose a novel kernel machine approach to identify higher-order composite effects in multi-view biomedical datasets.
The proposed method can effectively identify higher-order composite effects and suggest that corresponding features function in a concerted effort.
arXiv Detail & Related papers (2020-04-29T08:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.