The Topos of Transformer Networks
- URL: http://arxiv.org/abs/2403.18415v3
- Date: Sun, 5 May 2024 21:07:34 GMT
- Title: The Topos of Transformer Networks
- Authors: Mattia Jacopo Villani, Peter McBurney,
- Abstract summary: We provide a theoretical analysis of the expressivity of the transformer architecture through the lens of topos theory.
We show that many common neural network architectures can be embedded in a pretopos of piecewise-linear functions, but that the transformer necessarily lives in its topos completion.
- Score: 0.6629765271909505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The transformer neural network has significantly out-shined all other neural network architectures as the engine behind large language models. We provide a theoretical analysis of the expressivity of the transformer architecture through the lens of topos theory. From this viewpoint, we show that many common neural network architectures, such as the convolutional, recurrent and graph convolutional networks, can be embedded in a pretopos of piecewise-linear functions, but that the transformer necessarily lives in its topos completion. In particular, this suggests that the two network families instantiate different fragments of logic: the former are first order, whereas transformers are higher-order reasoners. Furthermore, we draw parallels with architecture search and gradient descent, integrating our analysis in the framework of cybernetic agents.
Related papers
- What Does It Mean to Be a Transformer? Insights from a Theoretical Hessian Analysis [8.008567379796666]
The Transformer architecture has inarguably revolutionized deep learning.
At its core, the attention block differs in form and functionality from most other architectural components in deep learning.
The root causes behind these outward manifestations, and the precise mechanisms that govern them, remain poorly understood.
arXiv Detail & Related papers (2024-10-14T18:15:02Z) - Rotation Equivariant Proximal Operator for Deep Unfolding Methods in Image Restoration [62.41329042683779]
We propose a high-accuracy rotation equivariant proximal network that embeds rotation symmetry priors into the deep unfolding framework.
This study makes efforts to suggest a high-accuracy rotation equivariant proximal network that effectively embeds rotation symmetry priors into the deep unfolding framework.
arXiv Detail & Related papers (2023-12-25T11:53:06Z) - Interpret Vision Transformers as ConvNets with Dynamic Convolutions [70.59235381143831]
We interpret vision Transformers as ConvNets with dynamic convolutions, which enables us to characterize existing Transformers and dynamic ConvNets in a unified framework.
Our interpretation can also guide the network design as researchers now can consider vision Transformers from the design space of ConvNets.
arXiv Detail & Related papers (2023-09-19T16:00:49Z) - NAR-Former V2: Rethinking Transformer for Universal Neural Network
Representation Learning [25.197394237526865]
We propose a modified Transformer-based universal neural network representation learning model NAR-Former V2.
Specifically, we take the network as a graph and design a straightforward tokenizer to encode the network into a sequence.
We incorporate the inductive representation learning capability of GNN into Transformer, enabling Transformer to generalize better when encountering unseen architecture.
arXiv Detail & Related papers (2023-06-19T09:11:04Z) - Centered Self-Attention Layers [89.21791761168032]
The self-attention mechanism in transformers and the message-passing mechanism in graph neural networks are repeatedly applied.
We show that this application inevitably leads to oversmoothing, i.e., to similar representations at the deeper layers.
We present a correction term to the aggregating operator of these mechanisms.
arXiv Detail & Related papers (2023-06-02T15:19:08Z) - Causal Deep Learning: Causal Capsules and Tensor Transformers [0.0]
Inverse causal questions are addressed with a neural network that implements multilinear projection and estimates the causes of effects.
Our forward and inverse neural network architectures are suitable for asynchronous parallel computation.
arXiv Detail & Related papers (2023-01-01T00:47:03Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
Recent vision transformers along with self-attention have achieved promising results on various computer vision tasks.
We introduce an effective hybrid architecture for super-resolution (SR) tasks, which leverages local features from CNNs and long-range dependencies captured by transformers.
Our proposed method achieves state-of-the-art SR results on numerous benchmark datasets.
arXiv Detail & Related papers (2022-03-15T06:52:25Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - A Survey on Visual Transformer [126.56860258176324]
Transformer is a type of deep neural network mainly based on the self-attention mechanism.
In this paper, we review these vision transformer models by categorizing them in different tasks and analyzing their advantages and disadvantages.
arXiv Detail & Related papers (2020-12-23T09:37:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.