BioMedLM: A 2.7B Parameter Language Model Trained On Biomedical Text
- URL: http://arxiv.org/abs/2403.18421v1
- Date: Wed, 27 Mar 2024 10:18:21 GMT
- Title: BioMedLM: A 2.7B Parameter Language Model Trained On Biomedical Text
- Authors: Elliot Bolton, Abhinav Venigalla, Michihiro Yasunaga, David Hall, Betty Xiong, Tony Lee, Roxana Daneshjou, Jonathan Frankle, Percy Liang, Michael Carbin, Christopher D. Manning,
- Abstract summary: BioMedLM is a 2.7 billion parameter GPT-style autoregressive model trained exclusively on PubMed abstracts and full articles.
When fine-tuned, BioMedLM can produce strong multiple-choice biomedical question-answering results competitive with larger models.
BioMedLM can also be fine-tuned to produce useful answers to patient questions on medical topics.
- Score: 82.7001841679981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Models such as GPT-4 and Med-PaLM 2 have demonstrated impressive performance on a wide variety of biomedical NLP tasks. However, these models have hundreds of billions of parameters, are computationally expensive to run, require users to send their input data over the internet, and are trained on unknown data sources. Can smaller, more targeted models compete? To address this question, we build and release BioMedLM, a 2.7 billion parameter GPT-style autoregressive model trained exclusively on PubMed abstracts and full articles. When fine-tuned, BioMedLM can produce strong multiple-choice biomedical question-answering results competitive with much larger models, such as achieving a score of 57.3% on MedMCQA (dev) and 69.0% on the MMLU Medical Genetics exam. BioMedLM can also be fine-tuned to produce useful answers to patient questions on medical topics. This demonstrates that smaller models can potentially serve as transparent, privacy-preserving, economical and environmentally friendly foundations for particular NLP applications, such as in biomedicine. The model is available on the Hugging Face Hub: https://huggingface.co/stanford-crfm/BioMedLM.
Related papers
- Biomedical Large Languages Models Seem not to be Superior to Generalist Models on Unseen Medical Data [3.469567586411153]
Large language models (LLMs) have shown potential in biomedical applications, leading to efforts to fine-tune them on domain-specific data.
This study evaluates the performance of biomedically fine-tuned LLMs against their general-purpose counterparts on a variety of clinical tasks.
arXiv Detail & Related papers (2024-08-25T13:36:22Z) - BMRetriever: Tuning Large Language Models as Better Biomedical Text Retrievers [48.21255861863282]
BMRetriever is a series of dense retrievers for enhancing biomedical retrieval.
BMRetriever exhibits strong parameter efficiency, with the 410M variant outperforming baselines up to 11.7 times larger.
arXiv Detail & Related papers (2024-04-29T05:40:08Z) - Small Language Models Learn Enhanced Reasoning Skills from Medical Textbooks [17.40940406100025]
We introduce Meerkat, a new family of medical AI systems ranging from 7 to 70 billion parameters.
Our systems achieved remarkable accuracy across six medical benchmarks.
Meerkat-70B correctly diagnosed 21 out of 38 complex clinical cases, outperforming humans' 13.8.
arXiv Detail & Related papers (2024-03-30T14:09:00Z) - MEDITRON-70B: Scaling Medical Pretraining for Large Language Models [91.25119823784705]
Large language models (LLMs) can potentially democratize access to medical knowledge.
We release MEDITRON: a suite of open-source LLMs with 7B and 70B parameters adapted to the medical domain.
arXiv Detail & Related papers (2023-11-27T18:49:43Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - Bioformer: an efficient transformer language model for biomedical text
mining [8.961510810015643]
We present Bioformer, a compact BERT model for biomedical text mining.
We pretrained two Bioformer models which reduced the model size by 60% compared to BERTBase.
With 60% fewer parameters, Bioformer16L is only 0.1% less accurate than PubMedBERT.
arXiv Detail & Related papers (2023-02-03T08:04:59Z) - BioGPT: Generative Pre-trained Transformer for Biomedical Text
Generation and Mining [140.61707108174247]
We propose BioGPT, a domain-specific generative Transformer language model pre-trained on large scale biomedical literature.
We get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks respectively, and 78.2% accuracy on PubMedQA.
arXiv Detail & Related papers (2022-10-19T07:17:39Z) - On the Effectiveness of Compact Biomedical Transformers [12.432191400869002]
Language models pre-trained on biomedical corpora have recently shown promising results on downstream biomedical tasks.
Many existing pre-trained models are resource-intensive and computationally heavy owing to factors such as embedding size, hidden dimension, and number of layers.
We introduce six lightweight models, namely, BioDistilBERT, BioTinyBERT, BioMobileBERT, DistilBioBERT, TinyBioBERT, and CompactBioBERT.
We evaluate all of our models on three biomedical tasks and compare them with BioBERT-v1.1 to create efficient lightweight models that perform on par with their larger counterparts.
arXiv Detail & Related papers (2022-09-07T14:24:04Z) - Fine-Tuning Large Neural Language Models for Biomedical Natural Language
Processing [55.52858954615655]
We conduct a systematic study on fine-tuning stability in biomedical NLP.
We show that finetuning performance may be sensitive to pretraining settings, especially in low-resource domains.
We show that these techniques can substantially improve fine-tuning performance for lowresource biomedical NLP applications.
arXiv Detail & Related papers (2021-12-15T04:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.